One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA.
View Article and Find Full Text PDFNucleosomal histone H2A is exchanged for its variant H2A.Z by the SWR1 chromatin remodeler, but the mechanism and timing of histone exchange remain unclear. Here, we quantify DNA and histone dynamics during histone exchange in real time using a three-color single-molecule FRET assay.
View Article and Find Full Text PDFSingle-molecule fluorescence resonance energy transfer (smFRET) is a useful tool for observing the dynamics of protein-nucleic acid interactions. Although most smFRET measurements have used two fluorophores, multicolor smFRET measurements using more than two fluorophores offer more information about how protein-nucleic acid complexes dynamically move, assemble, and disassemble. Multicolor smFRET experiments include three or more fluorophores and at least one donor-acceptor pair.
View Article and Find Full Text PDFHerein, we show that Zn binds to phosphatidylserine (PS) lipids in supported lipid bilayers (SLBs), forming a PS-Zn complex with an equilibrium dissociation constant of ∼100 μM. Significantly, Zn binding to SLBs containing more than 10 mol % PS induces extensive reordering of the bilayer. This reordering is manifest through bright spots of high fluorescence intensity that can be observed when the bilayer contains a dye-labeled lipid.
View Article and Find Full Text PDFAqueous two-phase system (ATPS) formation is the macroscopic completion of liquid-liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient.
View Article and Find Full Text PDFPhosphatidylethanolamine (PE) is notoriously difficult to incorporate into model membrane systems, such as fluid supported lipid bilayers (SLBs), at high concentrations because of its intrinsic negative curvature. Using fluorescence-based techniques, we demonstrate that having fewer sites of unsaturation in the lipid tails leads to high-quality SLBs because these lipids help to minimize the curvature. Moreover, shorter saturated chains can help maintain the membranes in the fluid phase.
View Article and Find Full Text PDFPhosphatidylserine (PS) has previously been found to bind Cu in a ratio of 1 Cu ion per 2 PS lipids to form a complex with an apparent dissociation constant that can be as low as picomolar. While the affinity of Cu for lipid membranes containing PS lipids has been well characterized, the structural details of the Cu-PS complex have not yet been reported. Coordinating to one amine and one carboxylate moiety on two separate PS lipids, the Cu-PS complex is unique among ion-lipid complexes in its ability to adopt both cis and trans conformations.
View Article and Find Full Text PDFThe interactions of two highly positively charged short peptide sequences with negatively charged lipid bilayers were explored by fluorescence binding assays and all-atom molecular dynamics simulations. The bilayers consisted of mixtures of phosphatidylglycerol (PG) and phosphatidylcholine (PC) lipids as well as a fluorescence probe that was sensitive to the interfacial potential. The first peptide contained nine arginine repeats (Arg9), and the second one had nine lysine repeats (Lys9).
View Article and Find Full Text PDFHerein, we demonstrate that Cu(2+) binds bivalently to phosphatidylethanolamine (PE), the second most abundant lipid in mammalian cells. The apparent equilibrium dissociation constant, K(DApp), for the Cu(2+)-PE complex at physiological pH is approximately 2 μM and is insensitive to the concentration of PE in the membrane. By contrast, at pH 10.
View Article and Find Full Text PDFHerein, the apparent equilibrium dissociation constant, K(Dapp), between Cu(2+) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), a negatively charged phospholipid, was measured as a function of PS concentrations in supported lipid bilayers (SLBs). The results indicated that K(Dapp) for Cu(2+) binding to PS-containing SLBs was enhanced by a factor of 17,000 from 110 nM to 6.4 pM as the PS density in the membrane was increased from 1.
View Article and Find Full Text PDFWe demonstrate a procedure for the separation of enzymes based on their chemotactic response toward an imposed substrate concentration gradient. The separation is observed within a two-inlet, five-outlet microfluidic network, designed to allow mixtures of active (ones that catalyze substrate turnover) and inactive (ones that do not catalyze substrate turnover) enzymes, labeled with different fluorophores, to flow through one of the inlets. Substrate solution prepared in phosphate buffer was introduced through the other inlet of the device at the same flow rate.
View Article and Find Full Text PDFWhile electrophoresis in lipid bilayers has been performed since the 1970s, the technique has until now been unable to accurately measure the charge on lipids and proteins within the membrane based on drift velocity measurements. Part of the problem is caused by the use of the Einstein-Smoluchowski equation to estimate the electrophoretic mobility of such species. The source of the error arises from the fact that a lipid headgroup is typically smaller than the Debye length of the adjacent aqueous solution in most electrophoresis experiments.
View Article and Find Full Text PDFPhosphatidylserine (PS) embedded within supported lipid bilayers was found to bind Cu(2+) from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu(2+)-to-PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion.
View Article and Find Full Text PDF