Disorder is an essential parameter in photonic systems and devices, influencing phenomena such as the robustness of topological photonic states and the Anderson localization of modes in waveguides. We develop and demonstrate a method for both analyzing and visualizing positional, size, and shape disorder in periodic structures such as photonic crystals. This analysis method shows selectivity for disorder type and sensitivity to disorder down to less than 1%.
View Article and Find Full Text PDFAn ultrafast vector magneto-optical Kerr effect (MOKE) microscope with integrated time-synchronized electrical pulses, two-dimensional magnetic fields, and low-temperature capabilities is reported. The broad range of capabilities of this instrument allows the comprehensive study of spin-orbital interaction-driven magnetization dynamics in a variety of novel magnetic materials or heterostructures: (1) electrical-pump and optical-probe spectroscopy allows the study of current-driven magnetization dynamics in the time domain, (2) two-dimensional magnetic fields along with the vector MOKE microscope allow the thorough study of the spin-orbital-interaction induced magnetization re-orientation in arbitrary directions, and (3) the low-temperature capability allows us to explore novel materials/devices where emergent phenomena appear at low temperature. We discuss the details and challenges of this instrument development and integration and present two datasets that demonstrate and benchmark the capabilities of this instrument: (a) a room-temperature time-domain study of current-induced magnetization dynamics in a ferromagnet/heavy metal bilayer and (b) a low-temperature quasi-static polar MOKE study of the magnetization of a novel compensated ferrimagnet.
View Article and Find Full Text PDFPhoton upconversion is a photophysical process in which two low-energy photons are converted into one high-energy photon. Photon upconversion has broad appeal for a range of applications from biomedical imaging and targeted drug release to solar energy harvesting. Current upconversion nanosystems, including lanthanide-doped nanocrystals and triplet-triplet annihilation molecules, have achieved upconversion quantum yields on the order of 10-30%.
View Article and Find Full Text PDFThere has been tremendous progress in manipulating electron and hole-spin states in quantum dots or quantum dot molecules (QDMs) with growth-direction (vertical) electric fields and optical excitations. However, the response of carriers in QDMs to an in-plane (lateral) electric field remains largely unexplored. We computationally explore spin-mixing interactions in the molecular states of single holes confined in vertically stacked InAs/GaAs QDMs using atomistic tight-binding simulations.
View Article and Find Full Text PDFThe engineering of quantum dot solids with low defect concentrations and efficient carrier transport through a ligand strategy is crucial to achieve efficient quantum dot (QD) optoelectronic devices. Here, we study the consequences of various surface ligand treatments on the light emission properties of PbS quantum dot films using 1,3-benzenedithiol (1,3-BDT), 1,2-ethanedithiol (EDT), mercaptocarboxylic acids (MPA) and ammonium sulfide ((NH4)2S). We first investigate the influence of different ligand treatments on the inter-dot separation, which mainly determines the conductivity of the QD films.
View Article and Find Full Text PDFBenzenedithiol (BDT) and ethanedithiol (EDT) ligand-exchange treatments can be used to cross-link colloidal PbS quantum dots into nanocrystalline film structures with distinct optoelectronic properties. Such structures can provide a unique platform to study the energy transfer between layers of quantum dots with different sizes. In this report, efficient exciton funneling and recycling of surface state-bound excitons is observed in cascaded PbS quantum dot-based multilayered superstructures, where the excitons transfer from the larger band gap or donor layers to the smallest band gap or acceptor layers.
View Article and Find Full Text PDF