Publications by authors named "Matthew Evan Magnuson"

The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence.

View Article and Find Full Text PDF

Anesthesia is often necessary to perform fMRI experiments in the rodent model; however, commonly used anesthetic protocols may manifest changing brain conditions over the duration of the study. This possibility was explored in the current work. Eleven rats were anesthetized with 2% isoflurane anesthesia; four rats were anesthetized for a short period (30 min, simulating induction and fMRI setup) and seven rats were anesthetized for a long period (3 h, simulating surgical preparation).

View Article and Find Full Text PDF

Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations.

View Article and Find Full Text PDF

Functional connectivity between brain regions, measured with resting state functional magnetic resonance imaging, holds great potential for understanding the basis of behavior and neuropsychiatric diseases. Recently it has become clear that correlations between the blood oxygenation level dependent (BOLD) signals from different areas vary over the course of a typical scan (6-10 min in length), though the changes are obscured by standard methods of analysis that assume the relationships are stationary. Unfortunately, because similar variability is observed in signals that share no temporal information, it is unclear which dynamic changes are related to underlying neural events.

View Article and Find Full Text PDF

The slow fluctuations of the blood-oxygenation-level dependent (BOLD) signal in resting-state fMRI are widely utilized as a surrogate marker of ongoing neural activity. Spontaneous neural activity includes a broad range of frequencies, from infraslow (<0.5 Hz) fluctuations to fast action potentials.

View Article and Find Full Text PDF

A better understanding of how behavioral performance emerges from interacting brain systems may come from analysis of functional networks using functional magnetic resonance imaging. Recent studies comparing such networks with human behavior have begun to identify these relationships, but few have used a time scale small enough to relate their findings to variation within a single individual's behavior. In the present experiment we examined the relationship between a psychomotor vigilance task and the interacting default mode and task positive networks.

View Article and Find Full Text PDF