Semiconducting single-walled carbon nanotubes (SWCNTs) constitute an ideal platform for developing near-infrared biosensors, single photon sources, and nanolasers due to their distinct optical and electrical properties. Covalent doping of SWCNTs has recently been discovered as an efficient approach in enhancing their emission intensities. We perform pump-probe studies of SWCNTs that are covalently doped with quantum defects and reveal strikingly different exciton formation dynamics and decay mechanisms in the presence of the defect sites.
View Article and Find Full Text PDFTo take peptide materials from predominantly structural to functional assemblies, variations in cofactor binding sites must be engineered and controlled. Here, we have employed the peptide sequence c16-AHX3K3-CO2H where X3 represents the aliphatic structural component of the peptide design that dictates β-sheet formation and upon self-assembly yields a change in the overall microenvironment surrounding the Zn protoporphyrin IX ((PPIX)Zn) binding site. All peptides studied yield β-sheet rich nanofibers highlighting the materials' resiliency to amino acid substitution.
View Article and Find Full Text PDFFilms containing mixtures of zero- or two-dimensional nanostructures (quantum dots or nanoplatelets) were prepared in order to investigate the impacts of dimensionality on electronic interactions. Electron transfer from CsPbBr to CdSe was observed in all of the mixtures, regardless of particle dimensionality, and characterized via both static and transient absorption and photoluminescence spectroscopies. We find that mixtures containing nanoplatelets as the electron acceptor (CdSe) undergo charge transfer more rapidly than those containing quantum dots.
View Article and Find Full Text PDFWe report on the experimental observation of differential wavevector distribution of surface-enhanced Raman scattering (SERS) and fluorescence from dye molecules confined to a gap between plasmonic silver nanowire and a thin, gold mirror. The fluorescence was mainly confined to higher values of in-plane wavevectors, whereas SERS signal was uniformly distributed along all the wavevectors. The optical energy-momentum spectra from the distal end of the nanowire revealed strong polarization dependence of this differentiation.
View Article and Find Full Text PDFThe originally published version of this Article contained an error in Equation 1. The two ℏ terms were missing from this equation. This has now been corrected in the PDF and HTML versions of the Article.
View Article and Find Full Text PDFThe creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy.
View Article and Find Full Text PDFLight-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers.
View Article and Find Full Text PDFPhotoinduced charge-transfer (CT) processes play a key role in many systems, particularly those relevant to organic photovoltaics and photosynthesis. Advancing the understanding of CT processes calls for comparing their rates measured via state-of-the-art time-resolved interface-specific spectroscopic techniques with theoretical predictions based on first-principles molecular models. We measure charge-transfer rates across a boron subphthalocyanine chloride (SubPc)/C60 heterojunction, commonly used in organic photovoltaics, via heterodyne-detected time-resolved second-harmonic generation.
View Article and Find Full Text PDFIn organic photovoltaics many key ultrafast processes occur at the interface between electron donor and acceptor molecules. Traditional ultrafast spectroscopies, such as pump-probe or time-resolved fluorescence, are not ideal for studying the interface because most of their signal is from the bulk material. Time-resolved second-harmonic generation (TRSHG) spectroscopy solves this problem by only generating signal from the interface.
View Article and Find Full Text PDF