Publications by authors named "Matthew E Long"

The sensing of nucleic acids by DEAD/H-box helicases, specifically retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), plays a critical role in inducing antiviral immunity following infection. However, this DEAD/H-box helicase family includes many additional proteins whose immune functions have not been investigated. While numerous DEAD/H-box helicases contribute to antiviral immunity, they employ diverse mechanisms beyond the direct sensing of nucleic acids.

View Article and Find Full Text PDF

Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity.

View Article and Find Full Text PDF

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the development of lung infections caused by antimicrobial resistant bacteria is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects.

View Article and Find Full Text PDF

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the acquisition of antibiotic resistance bacterial infections is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects.

View Article and Find Full Text PDF

Pneumonia and its sequelae, acute lung injury, present unique challenges for pulmonary and critical care healthcare professionals, and these challenges have recently garnered global attention due to the ongoing Sars-CoV-2 pandemic. One limitation to translational investigation of acute lung injury, including its most severe manifestation (acute respiratory distress syndrome, ARDS) has been heterogeneity resulting from the clinical and physiologic diagnosis that represents a wide variety of etiologies. Recent efforts have improved our understanding and approach to heterogeneity by defining sub-phenotypes of ARDS although significant gaps in knowledge remain.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) remains a significant problem in need of new pharmaceutical approaches to improve its resolution. Studies comparing gene expression signatures in rodents and humans with lung injury reveal conserved pathways, including MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-related protein kinase) activation. In preclinical acute lung injury (ALI) models, inhibition of MAP2K1 (MAPK kinase 1)/MAP2K2 (MAPK kinase 2) improves measures of ALI.

View Article and Find Full Text PDF

Interferon lambda (IFNλ) signaling is a promising therapeutic target against viral infection in murine models, yet little is known about its molecular regulation and its cognate receptor, interferon lambda receptor 1 (IFNLR1) in human lung. We hypothesized that the IFNλ signaling axis was active in human lung macrophages. In human alveolar macrophages (HAMs), we observed increased IFNLR1 expression and robust increase in interferon-stimulated gene (ISG) expression in response to IFNλ ligand.

View Article and Find Full Text PDF

Mice are a common animal model for the study of influenza virus A (IAV). IAV infection causes weight loss due to anorexia and dehydration, which can result in early removal of mice from a study when they reach a humane endpoint. To reduce the number of mice prematurely removed from an experiment, we assessed nutritional gel (NG) supplementation as a support strategy for mice infected with mouse-adapted Influenza A/Puerto Rico/8/34 (A/PR/8/34; H1N1) virus.

View Article and Find Full Text PDF

Background: CFTR modulators decrease some etiologies of CF airway inflammation; however, data indicate that non-resolving airway infection and inflammation persist in individuals with CF and chronic bacterial infections. Thus, identification of therapies that diminish airway inflammation without allowing unrestrained bacterial growth remains a critical research goal. Novel strategies for combatting deleterious airway inflammation in the CFTR modulator era require better understanding of cellular contributions to chronic CF airway disease, and how inflammatory cells change after initiation of CFTR modulator therapy.

View Article and Find Full Text PDF

The MEK1/2-ERK1/2 pathway has been implicated in regulating the inflammatory response to lung injury and infection, and pharmacologic MEK1/2 inhibitor compounds are reported to reduce detrimental inflammation in multiple animal models of disease, in part through modulation of leukocyte responses. However, the specific contribution of myeloid MEK1 in regulating acute lung injury (ALI) and its resolution remain unknown. Here, the role of myeloid Mek1 was investigated in a murine model of LPS-induced ALI (LPS-ALI) by genetic deletion using the Cre-floxed system (LysMCre × Mekfl), and human alveolar macrophages from healthy volunteers and patients with acute respiratory distress syndrome (ARDS) were obtained to assess activation of the MEK1/2-ERK1/2 pathway.

View Article and Find Full Text PDF

Background: Macrophage plasticity allows cells to adopt different phenotypes, a property with important implications in disorders such as cystic fibrosis (CF) and asthma.

Objective: We sought to examine the transcriptional and functional significance of macrophage repolarization from an M1 to an M2 phenotype and assess the role of a common human genetic disorder (CF) and a prototypical allergic disease (asthma) in this transformation.

Methods: Monocyte-derived macrophages were collected from healthy subjects and patients with CF and polarized to an M2 state by using IL-4, IL-10, glucocorticoids, apoptotic PMNs, or azithromycin.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are transcriptionally regulated proteases that have multiple roles in modifying the extracellular matrix (ECM) and inflammatory response. Our previous work identified Mmp28 as a key regulator of inflammation and macrophage polarization during experimental models of pulmonary infection, fibrosis, and chronic smoke exposure. However, the signaling pathways responsible for regulation of macrophage Mmp28 expression remain undefined.

View Article and Find Full Text PDF

This study was designed to test the therapeutic potential of a MEK1/2 inhibitor (MEKi) in an experimental model of pneumonia. The study found that treatment with MEKi reduced alveolar neutrophilic inflammation and led to faster recovery of weight compared to carrier-treated mice, without impairing bacterial clearance. Alveolar macrophages isolated from MEKi-treated mice also had increased M2 gene and protein expression, supporting the concept that MEKi modulates in vivo macrophage inflammatory responses.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) comprises chronic bronchitis and emphysema, and is a leading cause of morbidity and mortality. Because tissue destruction is the prominent characteristic of emphysema, extracellular proteinases, particularly those with elastolytic ability, are often considered to be key drivers in this disease. Several human and mouse studies have implicated roles for matrix metalloproteinases (MMPs), particularly macrophage-derived proteinases, in COPD pathogenesis.

View Article and Find Full Text PDF

Macrophages have important functional roles in regulating the timely promotion and resolution of inflammation. Although many of the intracellular signaling pathways involved in the proinflammatory responses of macrophages are well characterized, the components that regulate macrophage reparative properties are less well understood. We identified the MEK1/2 pathway as a key regulator of macrophage reparative properties.

View Article and Find Full Text PDF

Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis.

View Article and Find Full Text PDF

The lipopolysaccharide (LPS) and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule.

View Article and Find Full Text PDF

Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined.

View Article and Find Full Text PDF

Cell-targeted therapies (smart drugs), which selectively control cancer cell progression with limited toxicity to normal cells, have been developed to effectively treat some cancers. However, many cancers such as metastatic prostate cancer (PC) have yet to be treated with current smart drug technology. Here, we describe the thorough preclinical characterization of an RNA aptamer (A9g) that functions as a smart drug for PC by inhibiting the enzymatic activity of prostate-specific membrane antigen (PSMA).

View Article and Find Full Text PDF

The Francisella tularensis pathogenicity island (FPI) encodes many proteins that are required for virulence. Expression of these genes depends upon the FevR (PigR) regulator and its interactions with the MglA/SspA and RNA polymerase transcriptional complex. Experiments to identify how transcription of the FPI genes is activated have led to identification of mutations within the migR, trmE, and cphA genes that decrease FPI expression.

View Article and Find Full Text PDF

Francisella tularensis is a facultative intracellular bacterial pathogen and the causative agent of tularemia. After infection of macrophages, the organism escapes from its phagosome and replicates to high density in the cytosol, but the bacterial factors required for these aspects of virulence are incompletely defined. Here, we describe the isolation and characterization of Francisella tularensis subsp.

View Article and Find Full Text PDF

A fundamental step in the life cycle of Francisella tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface.

View Article and Find Full Text PDF