Ecological speciation with gene flow is widespread in nature [1], but it presents a conundrum: how are associations between traits under divergent natural selection and traits that contribute to assortative mating maintained? Theoretical models suggest that genetic mechanisms inhibiting free recombination between loci underlying these two types of traits (hereafter, "genetic coupling") can facilitate speciation [2-4]. Here, we perform a direct test for genetic coupling by mapping both divergent traits and female mate choice in a classic model of ecological speciation: sympatric benthic and limnetic threespine stickleback (Gasterosteus aculeatus). By measuring mate choice in F2 hybrid females, we allowed for recombination between loci underlying assortative mating and those under divergent ecological selection.
View Article and Find Full Text PDFAlthough there is a heritable basis for many animal behaviors, the genetic architecture of behavioral variation in natural populations remains mostly unknown, particularly in vertebrates. We sought to identify the genetic basis for social affiliation in two populations of threespine sticklebacks (Gasterosteus aculeatus) that differ in their propensity to school. Marine sticklebacks from Japan school strongly whereas benthic sticklebacks from a lake in Canada are more solitary.
View Article and Find Full Text PDF