Direct reprogramming of fibroblasts to cardiomyocytes represents a potential means of restoring cardiac function following myocardial injury. AKT1 in the presence of four cardiogenic transcription factors, GATA4, HAND2, MEF2C, and TBX5 (AGHMT), efficiently induces the cardiac gene program in mouse embryonic fibroblasts but not adult fibroblasts. To identify additional regulators of adult cardiac reprogramming, we performed an unbiased screen of transcription factors and cytokines for those that might enhance or suppress the cardiogenic activity of AGHMT in adult mouse fibroblasts.
View Article and Find Full Text PDFRight-sided heart failure is the most common cause of death in pulmonary hypertension (PH). Echocardiographic measurements of right atrial (RA) size are associated with worse outcome in PH, however the association between RA function and death in PH has not been well-described. 160 PH patients (World Health Organization groups 1-5) underwent cardiac magnetic resonance imaging (cMRI) and right heart catheterization (RHC) within 6 weeks of each other at a tertiary care academic medical center in the United States.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT.
View Article and Find Full Text PDFGenetic and functional data support a role for angiotensinogen in blood pressure control, and many population studies have suggested that polymorphisms in the angiotensinogen gene contribute to hypertension. Two common haplotypes of the human angiotensinogen gene are -6A/235T and -6G/235M. To study their contributions to blood pressure regulation in a controlled model system, we developed triple-transgenic mice expressing either -6A/235T or -6G/235M human angiotensinogen, expressing either an overexpressed and poorly regulated (REN9) or a tightly regulated (PAC160) human renin, and all carrying a null mutation in the endogenous murine angiotensinogen gene.
View Article and Find Full Text PDFAmong naturally occurring polymorphisms in the 5' flanking region of the human angiotensinogen (AGT) gene, the -20 and -217 polymorphisms have the strongest effects on AGT regulation in AGT-expressing cells derived from liver, kidney, brain, and fat. These polymorphisms may affect allele-specific transcription factor binding, and the high-expressing alleles are both relatively common. We show herein that the -20C allele has higher transcriptional activity than -20A, and the -20A allele confers no additional transactivation potential beyond that of a mutated vector.
View Article and Find Full Text PDFA number of naturally occurring polymorphisms exist in the human angiotensinogen locus, some of which have been associated with essential hypertension, preeclampsia, and other medical disorders. However, to date there has been no comprehensive determination of the significance of specific haplotypes in relation to the regulation of angiotensinogen expression. We cloned the promoters extending from -1219 to +125 bp from 11 ethnically diverse individuals to acquire a representative cross-section of known haplotype diversity.
View Article and Find Full Text PDF