Mounting evidence suggests that climate change will cause shifts of tree species range and abundance (biomass). Abundance changes under climate change are likely to occur prior to a detectable range shift. Disturbances are expected to directly affect tree species abundance and composition, and could profoundly influence tree species spatial distribution within a geographical region.
View Article and Find Full Text PDFNatural disturbances exacerbated by novel climate regimes are increasing worldwide, threatening the ability of forest ecosystems to mitigate global warming through carbon sequestration and to provide other key ecosystem services. One way to cope with unknown disturbance events is to promote the ecological resilience of the forest by increasing both functional trait and structural diversity and by fostering functional connectivity of the landscape to ensure a rapid and efficient self-reorganization of the system. We investigated how expected and unexpected variations in climate and biotic disturbances affect ecological resilience and carbon storage in a forested region in southeastern Canada.
View Article and Find Full Text PDFIn an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery.
View Article and Find Full Text PDFRapid changes in climate and land use threaten the persistence of wildlife species. Understanding where species are likely to occur now and in the future can help identify areas that are resistant to change over time and guide conservation planning. We estimated changes in species distribution patterns and spatial resistance in five future scenarios for the New England region of the northeastern United States.
View Article and Find Full Text PDFForests are projected to undergo dramatic compositional and structural shifts prompted by global changes, such as climatic changes and intensifying natural disturbance regimes. Future uncertainty makes planning for forest management exceptionally difficult, demanding novel approaches to maintain or improve the ability of forest ecosystems to respond and rapidly reorganize after disturbance events. Adopting a landscape perspective in forest management is particularly important in fragmented forest landscapes where both diversity and connectivity play key roles in determining resilience to global change.
View Article and Find Full Text PDFNew England has lost more than 350,000 ha of forest cover since 1985, marking a reversal of a two-hundred-year trend of forest expansion. We a cellular land-cover change model to project a continuation of recent trends (1990-2010) in forest loss across six New England states from 2010 to 2060. Recent trends were estimated using a continuous change detection algorithm applied to twenty years of Landsat images.
View Article and Find Full Text PDFClimate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States.
View Article and Find Full Text PDFWithin the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity.
View Article and Find Full Text PDFInfluenced by natural climatic, geological, and evolutionary changes, landscapes and the ecosystems within are continuously changing. In addition to these natural pressures, anthropogenic drivers have increasingly influenced ecosystems. Whether affected by natural or anthropogenic processes, ecosystems, ecological communities, and ecosystem functioning are dynamic and can lead to "novel" or "emerging" ecosystems.
View Article and Find Full Text PDF