Publications by authors named "Matthew Durrant"

The genome is a sequence that encodes the DNA, RNA, and proteins that orchestrate an organism's function. We present Evo, a long-context genomic foundation model with a frontier architecture trained on millions of prokaryotic and phage genomes, and report scaling laws on DNA to complement observations in language and vision. Evo generalizes across DNA, RNA, and proteins, enabling zero-shot function prediction competitive with domain-specific language models and the generation of functional CRISPR-Cas and transposon systems, representing the first examples of protein-RNA and protein-DNA codesign with a language model.

View Article and Find Full Text PDF

Insertion sequence (IS) elements are the simplest autonomous transposable elements found in prokaryotic genomes. We recently discovered that IS110 family elements encode a recombinase and a non-coding bridge RNA (bRNA) that confers modular specificity for target DNA and donor DNA through two programmable loops. Here we report the cryo-electron microscopy structures of the IS110 recombinase in complex with its bRNA, target DNA and donor DNA in three different stages of the recombination reaction cycle.

View Article and Find Full Text PDF

Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes that are involved in fundamental DNA repair processes, such as homologous recombination, or in the transposition of foreign genetic material by viruses and mobile genetic elements. Here we report that IS110 insertion sequences, a family of minimal and autonomous mobile genetic elements, express a structured non-coding RNA that binds specifically to their encoded recombinase.

View Article and Find Full Text PDF

Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions, or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes involved in fundamental DNA repair processes such as homologous recombination or in the transposition of foreign genetic material by viruses and mobile genetic elements (MGEs). We report that IS110 insertion sequences, a family of minimal and autonomous MGEs, express a structured non-coding RNA that binds specifically to their encoded recombinase.

View Article and Find Full Text PDF

Effective and precise mammalian transcriptome engineering technologies are needed to accelerate biological discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases, their utility has been hampered by an incomplete understanding of guide RNA design rules and cellular toxicity resulting from off-target or collateral RNA cleavage. Here, we quantified the performance of over 127,000 RfxCas13d (CasRx) guide RNAs and systematically evaluated seven machine learning models to build a guide efficiency prediction algorithm orthogonally validated across multiple human cell types.

View Article and Find Full Text PDF

Mapping the functional human genome and impact of genetic variants is often limited to European-descendent population samples. To aid in overcoming this limitation, we measured gene expression using RNA sequencing in lymphoblastoid cell lines (LCLs) from 599 individuals from six African populations to identify novel transcripts including those not represented in the hg38 reference genome. We used whole genomes from the 1000 Genomes Project and 164 Maasai individuals to identify 8,881 expression and 6,949 splicing quantitative trait loci (eQTLs/sQTLs), and 2,611 structural variants associated with gene expression (SV-eQTLs).

View Article and Find Full Text PDF

Large serine recombinases (LSRs) are DNA integrases that facilitate the site-specific integration of mobile genetic elements into bacterial genomes. Only a few LSRs, such as Bxb1 and PhiC31, have been characterized to date, with limited efficiency as tools for DNA integration in human cells. In this study, we developed a computational approach to identify thousands of LSRs and their DNA attachment sites, expanding known LSR diversity by >100-fold and enabling the prediction of their insertion site specificities.

View Article and Find Full Text PDF

Polygenic risk scores (PRSs) quantify the contribution of multiple genetic loci to an individual's likelihood of a complex trait or disease. However, existing PRSs estimate this likelihood with common genetic variants, excluding the impact of rare variants. Here, we report on a method to identify rare variants associated with outlier gene expression and integrate their impact into PRS predictions for body mass index (BMI), obesity, and bariatric surgery.

View Article and Find Full Text PDF

London is one of the world's most important coastal cities and is located around the Thames Estuary, United Kingdom (UK). Quantifying changes in sea levels in the Thames Estuary over the 20 century and early part of the 21 century is vital to inform future management of flood risk in London. However, there are currently relatively few long, digital records of sea level available in the Thames.

View Article and Find Full Text PDF

Background: Identification of causal genes for polygenic human diseases has been extremely challenging, and our understanding of how physiological and pharmacological stimuli modulate genetic risk at disease-associated loci is limited. Specifically, insulin resistance (IR), a common feature of cardiometabolic disease, including type 2 diabetes, obesity, and dyslipidemia, lacks well-powered genome-wide association studies (GWAS), and therefore, few associated loci and causal genes have been identified.

Methods: Here, we perform and integrate linkage disequilibrium (LD)-adjusted colocalization analyses across nine cardiometabolic traits (fasting insulin, fasting glucose, insulin sensitivity, insulin sensitivity index, type 2 diabetes, triglycerides, high-density lipoprotein, body mass index, and waist-hip ratio) combined with expression and splicing quantitative trait loci (eQTLs and sQTLs) from five metabolically relevant human tissues (subcutaneous and visceral adipose, skeletal muscle, liver, and pancreas).

View Article and Find Full Text PDF

Complex traits and diseases can be influenced by both genetics and environment. However, given the large number of environmental stimuli and power challenges for gene-by-environment testing, it remains a critical challenge to identify and prioritize specific disease-relevant environmental exposures. We propose a framework for leveraging signals from transcriptional responses to environmental perturbations to identify disease-relevant perturbations that can modulate genetic risk for complex traits and inform the functions of genetic variants associated with complex traits.

View Article and Find Full Text PDF

Small open reading frames (smORFs) and their encoded microproteins play central roles in microbes. However, there is a vast unexplored space of smORFs within human-associated microbes. A recent bioinformatic analysis used evolutionary conservation signals to enhance prediction of small protein families.

View Article and Find Full Text PDF
Article Synopsis
  • Acute physical activity triggers significant changes in various biological systems, including metabolic, cardiovascular, and immune responses in the body.!
  • Researchers conducted a detailed analysis of blood samples from 36 volunteers, identifying thousands of molecular changes related to energy metabolism, inflammation, tissue repair, and more after exercise.!
  • Insulin-resistant individuals showed less pronounced responses, leading to the identification of biological pathways that could predict exercise capacity, with potential implications for developing blood-based biomarkers for fitness levels.!
View Article and Find Full Text PDF

Mobile genetic elements (MGEs) contribute to bacterial adaptation and evolution; however, high-throughput, unbiased MGE detection remains challenging. We describe MGEfinder, a bioinformatic toolbox that identifies integrative MGEs and their insertion sites by using short-read sequencing data. MGEfinder identifies the genomic site of each MGE insertion and infers the identity of the inserted sequence.

View Article and Find Full Text PDF

Background: Molecular and cellular changes are intrinsic to aging and age-related diseases. Prior cross-sectional studies have investigated the combined effects of age and genetics on gene expression and alternative splicing; however, there has been no long-term, longitudinal characterization of these molecular changes, especially in older age.

Results: We perform RNA sequencing in whole blood from the same individuals at ages 70 and 80 to quantify how gene expression, alternative splicing, and their genetic regulation are altered during this 10-year period of advanced aging at a population and individual level.

View Article and Find Full Text PDF

Differences in microbial genomes can result in vastly different phenotypes and functions. Consequently, it is critical to understand the genome variations that differentiate microbial strains. Here, we discuss recent exciting advances that enable structural variant measurement, their associated phenotypes and the horizon for future discovery.

View Article and Find Full Text PDF

Herbivory-induced defenses are specific and activated in plants when elicitors, frequently found in the herbivores' oral secretions, are introduced into wounds during attack. While complex signaling cascades are known to be involved, it remains largely unclear how natural selection has shaped the evolution of these induced defenses. We analyzed herbivory-induced transcriptomic responses in wild tobacco, Nicotiana attenuata, using a phylotranscriptomic approach that measures the origin and sequence divergence of herbivory-induced genes.

View Article and Find Full Text PDF

Background: The S31N amantadine-resistance mutation in the influenza A M2 sequence currently occurs more frequently in nature than the S31 wild type. Overcoming the resistance of the S31N mutation is the primary focus of M2 researchers who aim to develop novel antiviral therapies. Recent studies have noted a possible rise in frequency of the V27A/S31N double amantadine-resistance mutation in recent years.

View Article and Find Full Text PDF