Three isotopes of scandium─Sc, Sc, and Sc─have attracted increasing attention as potential candidates for use in imaging and therapy, respectively, as well as for possible theranostic use as an elementally matched pair. Here, we present the octadentate chelator 3,4,3-(LI-1,2-HOPO) (or HOPO), an effective chelator for hard cations, as a potential ligand for use in radioscandium constructs with simple radiolabeling under mild conditions. HOPO forms a 1:1 Sc-HOPO complex that was fully characterized, both experimentally and theoretically.
View Article and Find Full Text PDFUnlabelled: A pentapeptide macrocyclic ligand, KYCAR (lysyl-tyrosyl-cystyl-alanyl-arginine), has been designed as a potential chelating ligand for SPECT imaging and therapeutic in vivo agents. This study shows the synthesis and characterization of KYCAR complexes containing nonradioactive rhenium, Tc, or Re. The metal complexes were also biologically evaluated to determine in vivo distribution in healthy mice.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2018
The lithium oxygen battery has a theoretical energy density potentially meeting the challenging requirements of electric vehicles. However, safety concerns and short lifespan hinder its application in practical systems. In this work, we show a cell configuration, including a multiwalled carbon nanotube electrode and a low flammability glyme electrolyte, capable of hundreds of cycles without signs of decay.
View Article and Find Full Text PDFTriethylene glycol dimethyl ether (TREGDME) dissolving lithium trifluoromethanesulfonate (LiCFSO) is studied as a suitable electrolyte medium for lithium battery. Thermal and rheological characteristics, transport properties of the dissolved species, and the electrochemical behavior in lithium cell represent the most relevant investigated properties of the new electrolyte. The self-diffusion coefficients, the lithium transference numbers, the ionic conductivity, and the ion association degree of the solution are determined by pulse field gradient nuclear magnetic resonance and electrochemical impedance spectroscopy.
View Article and Find Full Text PDFA novel, low cost and environmentally sustainable lithium sulfide-carbon composite cathode, suitably prepared by combining polyethylene oxide (PEO), LiCFSO and LiS-C powders is here presented. The cathode is characterized in lithium-metal cell employing a solution of LiCFSO salt in dioxolane-dimethylether (DOL-DME) as the electrolyte. Detailed NMR investigation of the diffusion properties of the electrolyte is reported in order to determine its suitability for the proposed cell.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2015
Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2014
Many noncoding RNA molecules adopt alternative secondary and tertiary conformations that are critical for their roles in gene expression. Although many of these rearrangements are mediated by other biomolecular components, it is important to evaluate the equilibrium relationship of the conformers. To measure the spontaneous interconversion in a bi-stable RNA stem loop sequence into which a single (19)F-uridine label was incorporated, a (19)F-(19)F EXSY experiment was employed.
View Article and Find Full Text PDFA general synthesis of bridged isoxazolidines from a double hetero-Michael addition of N-substituted hydroxylamines to quinone monoketals has been developed. The different addition order of N-benzylhydroxylamine and N-Boc hydroxylamine is also discussed. Moreover, the various functionalities in the isoxazolidine products allow facile derivatization.
View Article and Find Full Text PDFThe complex formed between the U2 and U6 small nuclear (sn)RNA molecules of the eukaryotic spliceosome plays a critical role in the catalysis of precursor mRNA splicing. Here, we have used enzymatic structure probing, (19)F NMR, and analytical ultracentrifugation techniques to characterize the fold of a protein-free biophysically tractable paired construct representing the human U2-U6 snRNA complex. Results from enzymatic probing and (19)F NMR for the complex in the absence of Mg(2+) are consistent with formation of a four-helix junction structure as a predominant conformation.
View Article and Find Full Text PDFTransactivation-response element (TAR) is a stable stem-loop structure of HIV RNA, which plays a crucial role during the life cycle of the virus. The apical loop of TAR acts as a binding site for essential cellular cofactors required for the replication of HIV. High-affinity aptamers directed against the apical loop of TAR have been identified by the SELEX approach.
View Article and Find Full Text PDFThe human DEK protein has a long-standing association with carcinogenesis since the DEK gene was originally identified in the t(6:9) chromosomal translocation in a subtype of patients with acute myelogenous leukemia (AML). Recent studies have partly unveiled DEK's cellular functions including apoptosis inhibition in primary cells as well as cancer cells, determination of 3' splice site of transcribed RNA, and suppression of transcription initiation by polymerase II. It has been previously shown that the N-terminal region of DEK, spanning residues 68-226, confers important in vitro and in vivo functions of DEK, which include double-stranded DNA (ds-DNA) binding, introduction of constrained positive supercoils into closed dsDNA, and apoptosis inhibition.
View Article and Find Full Text PDFProtein Expr Purif
April 2005
The 375 amino acid human protein DEK has been expressed in two functional, structured domains. DEK is an abundant nuclear protein that associates with chromatin and alters its topology by introducing positive supercoiling in DNA, which results in lower replication efficiency. DEK has clinical importance as transfection of the cDNA of the C-terminal region of DEK can partially reverse the abnormal DNA-mutagen sensitivity in fibroblasts derived from ataxia-telangiectasia (A-T) patients, and elevated levels of DEK mRNA are observed in various forms of cancer.
View Article and Find Full Text PDFThe chromatin-associated protein DEK was first identified as a fusion protein in patients with a subtype of acute myelogenous leukemia. It has since become associated with diverse human ailments ranging from cancers to autoimmune diseases. Despite much research effort, the biochemical basis for these clinical connections has yet to be explained.
View Article and Find Full Text PDF