Protein production in the biopharmaceutical industry necessitates the utilization of multiple analytical techniques and control methodologies to ensure both safety and consistency. To facilitate real-time monitoring and control of cell culture processes, Raman spectroscopy has emerged as a versatile analytical technology. This technique, categorized as a Process Analytical Technology, employs chemometric models to establish correlations between Raman signals and key variables of interest.
View Article and Find Full Text PDFRift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied.
View Article and Find Full Text PDFThe biopharmaceutical industry continuously seeks to optimize the critical quality attributes to maintain the reliability and cost-effectiveness of its products. Such optimization demands a scalable and optimal control strategy to meet the process constraints and objectives. This work uses a model predictive controller (MPC) to compute an optimal feeding strategy leading to maximized cell growth and metabolite production in fed-batch cell culture processes.
View Article and Find Full Text PDFRift Valley fever (RVF) is a disease of animals and humans associated with abortions in ruminants and late-gestation miscarriages in women. Here, we use a rat model of congenital RVF to identify tropisms, pathologies, and immune responses in the placenta during vertical transmission. Infection of late-gestation pregnant rats resulted in vertical transmission to the placenta and widespread infection throughout the decidua, basal zone, and labyrinth zone.
View Article and Find Full Text PDFBackground: Herpesviruses alter cognitive functions in humans following acute infections; progressive cognitive decline and dementia have also been suggested. It is important to understand the pathogenic mechanisms of such infections. The complement system - comprising functionally related proteins integral for systemic innate and adaptive immunity - is an important component of host responses.
View Article and Find Full Text PDFRift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection.
View Article and Find Full Text PDFBackground: Drug repurposing is a cost-effective strategy to identify drugs with novel effects. We searched for drugs exhibiting inhibitory activity to Herpes Simplex virus 1 (HSV-1). Our strategy utilized gene expression data generated from HSV-1-infected cell cultures which was paired with drug effects on gene expression.
View Article and Find Full Text PDFHerpes simplex virus 1 (HSV-1) can induce damage in brain regions that include the hippocampus and associated limbic structures. These neurogenic niches are important because they are associated with memory formation and are highly enriched with neural progenitor cells (NPCs). The susceptibility and fate of HSV-1-infected NPCs are largely unexplored.
View Article and Find Full Text PDFFront Immunol
October 2020
Zika virus (ZIKV) infection during pregnancy is associated with microcephaly, a congenital malformation resulting from neuroinflammation and direct effects of virus replication on the developing central nervous system (CNS). However, the exact changes in the affected CNS remain unknown. Here, we show by transcriptome analysis (at 48 h post-infection) and multiplex immune profiling that human induced-neuroprogenitor stem cells (hiNPCs) respond to ZIKV infection with a strong induction of type-I interferons (IFNs) and several type-I IFNs stimulated genes (ISGs), notably cytokines and the pro-apoptotic chemokines CXCL9 and CXCL10.
View Article and Find Full Text PDFHerpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons.
View Article and Find Full Text PDFAcyclovir (ACV) is an effective antiviral agent for treating lytic Herpes Simplex virus, type 1 (HSV-1) infections, and it has dramatically reduced the mortality rate of herpes simplex encephalitis. However, HSV-1 resistance to ACV and its derivatives is being increasingly documented, particularly among immunocompromised individuals. The burgeoning drug resistance compels the search for a new generation of more efficacious anti-herpetic drugs.
View Article and Find Full Text PDFDevelopment of a chiral pool-based synthesis of 10-aza-analogues of biologically active alkaloids is described, involving a concise reductive amination and condensation sequence, leading to ring-B/C-modified, fully functionalized ring-C derivatives. Differentiated anticancer and antiviral activities of these analogues are presented. Despite complete conformational and functional group overlap, the 10-aza-analogues have diminished anticancer activity and no antiviral activity.
View Article and Find Full Text PDFMovement is fundamental to human and animal life, emerging through interaction of complex neural, muscular, and skeletal systems. Study of movement draws from and contributes to diverse fields, including biology, neuroscience, mechanics, and robotics. OpenSim unites methods from these fields to create fast and accurate simulations of movement, enabling two fundamental tasks.
View Article and Find Full Text PDFBackground: A variety of neurological disorders including neurodegenerative diseases and infection by neurotropic viruses can cause structural and functional changes in the central nervous system (CNS), resulting in long-term neurological sequelae. An improved understanding of the pathogenesis of these disorders is important for developing efficacious interventions. Human induced pluripotent stem cells (hiPSCs) offer an extraordinary window for modeling pathogen-CNS interactions, and other cellular interactions, in three-dimensional (3D) neuronal cultures that can recapitulate several aspects of in vivo brain tissue.
View Article and Find Full Text PDFAnkle inversion sprains are the most frequent acute musculoskeletal injuries occurring in physical activity. Interventions that retrain muscle coordination have helped rehabilitate injured ankles, but it is unclear which muscle coordination strategies, if any, can prevent ankle sprains. The purpose of this study was to determine whether coordinated activity of the ankle muscles could prevent excessive ankle inversion during a simulated landing on a 30° incline.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
October 2016
Objective: Musculoskeletal models provide a non-invasive means to study human movement and predict the effects of interventions on gait. Our goal was to create an open-source 3-D musculoskeletal model with high-fidelity representations of the lower limb musculature of healthy young individuals that can be used to generate accurate simulations of gait.
Methods: Our model includes bony geometry for the full body, 37 degrees of freedom to define joint kinematics, Hill-type models of 80 muscle-tendon units actuating the lower limbs, and 17 ideal torque actuators driving the upper body.
Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.
View Article and Find Full Text PDFMuscles induce large forces in the tibiofemoral joint during walking and thereby influence the health of tissues like articular cartilage and menisci. It is possible to walk with a wide variety of muscle coordination patterns, but the effect of varied muscle coordination on tibiofemoral contact forces remains unclear. The goal of this study was to determine the effect of varied muscle coordination on tibiofemoral contact forces.
View Article and Find Full Text PDFNet muscle moments (NMMs) have been used as proxy measures of joint loading, but musculoskeletal models can estimate contact forces within joints. The purpose of this study was to use a musculoskeletal model to estimate tibiofemoral forces and to examine the relationship between NMMs and tibiofemoral forces across walking speeds. We collected kinematic, kinetic, and electromyographic data as ten adult participants walked on a dual-belt force-measuring treadmill at 0.
View Article and Find Full Text PDFMusculoskeletal simulation software and model repositories have broadened the user base able to perform musculoskeletal analysis and have facilitated in the sharing of models. As the recognition of musculoskeletal modeling continues to grow as an engineering discipline, the consistency in results derived from different models and software is becoming more critical. The purpose of this study was to compare eight models from three software packages and evaluate differences in quadriceps moment arms, predicted muscle forces, and predicted tibiofemoral contact forces for an idealized knee-extension task spanning -125 to +10° of knee extension.
View Article and Find Full Text PDF