Myocardial infarction (MI) mobilizes macrophages, the central protagonists of tissue repair in the infarcted heart. Although necessary for repair, macrophages also contribute to adverse remodeling and progression to heart failure. In this context, specific targeting of inflammatory macrophage activation may attenuate maladaptive responses and enhance cardiac repair.
View Article and Find Full Text PDFSolid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients.
View Article and Find Full Text PDFSurvivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia.
View Article and Find Full Text PDFAcute myocardial infarction stands as a prominent cause of morbidity and mortality worldwide. Clinical studies have demonstrated that the severity of cardiac injury following myocardial infarction exhibits a circadian pattern, with larger infarct sizes and poorer outcomes in patients experiencing morning onset myocardial infarctions. However, the molecular mechanisms that govern circadian variations of myocardial injury remain unclear.
View Article and Find Full Text PDFImmune cell function among the myocardium, now more than ever, is appreciated to regulate cardiac function and pathophysiology. This is the case for both innate immunity, which includes neutrophils, monocytes, dendritic cells, and macrophages, as well as adaptive immunity, which includes T cells and B cells. This function is fueled by cell-intrinsic shifts in metabolism, such as glycolysis and oxidative phosphorylation, as well as metabolite availability, which originates from the surrounding extracellular milieu and varies during ischemia and metabolic syndrome.
View Article and Find Full Text PDFFemoral atherosclerotic plaques are less inflammatory than carotid plaques histologically, but limited cell-level data exist regarding comparative immune landscapes and polarization at these sites. We investigated intraplaque leukocyte phenotypes and transcriptional polarization in 49 patients undergoing femoral (n = 23) or carotid (n = 26) endarterectomy using single-cell RNA-Seq (scRNA-Seq; n = 13), flow cytometry (n = 24), and IHC (n = 12). Comparative scRNA-Seq of CD45+-selected leukocytes from femoral (n = 9; 35,265 cells) and carotid (n = 4; 30,655 cells) plaque revealed distinct transcriptional profiles.
View Article and Find Full Text PDFClearance of dying cells by efferocytosis is necessary for cardiac repair after myocardial infarction (MI). Recent reports have suggested a protective role for vascular endothelial growth factor C (VEGFC) during acute cardiac lymphangiogenesis after MI. Here, we report that defective efferocytosis by macrophages after experimental MI led to a reduction in cardiac lymphangiogenesis and Vegfc expression.
View Article and Find Full Text PDFMyocardial infarction is associated with increased risk for vascular dementia. In both myocardial infarction and vascular dementia, there is evidence that elevated inflammatory biomarkers are associated with worsened clinical outcomes. Myocardial infarction leads to a systemic inflammatory response, which may contribute to recruitment or activation of myeloid cells, including monocytes, microglia, and perivascular macrophages, within the central nervous system.
View Article and Find Full Text PDFChronic inflammatory diseases (CIDs) are considered risk enhancing factors for coronary heart disease (CHD). However, sparse data exist regarding relative CHD risks across CIDs. Determine relative differences in CHD risk across multiple CIDs: psoriasis, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), human immunodeficiency virus (HIV), systemic sclerosis (SSc), and inflammatory bowel disease (IBD).
View Article and Find Full Text PDFHypoxia-inducible factors (HIFs) are activated in parenchymal cells in response to low oxygen and as such have been proposed as therapeutic targets during hypoxic insult, including myocardial infarction (MI). HIFs are also activated within macrophages, which orchestrate the tissue repair response. Although isoform-specific therapeutics are in development for cardiac ischemic injury, surprisingly, the unique role of myeloid HIFs, and particularly HIF-2α, is unknown.
View Article and Find Full Text PDFCardiac Allograft Vasculopathy (CAV) is a leading contributor to late transplant rejection. Although implicated, the mechanisms by which bone marrow-derived cells promote CAV remain unclear. Emerging evidence implicates the cell surface receptor tyrosine kinase AXL to be elevated in rejecting human allografts.
View Article and Find Full Text PDFTyro3, AXL, and MerTK (TAM) receptors are activated in macrophages in response to tissue injury and as such have been proposed as therapeutic targets to promote inflammation resolution during sterile wound healing, including myocardial infarction. Although the role of MerTK in cardioprotection is well characterized, the unique role of the other structurally similar TAMs, and particularly AXL, in clinically relevant models of myocardial ischemia/reperfusion infarction (IRI) is comparatively unknown. Utilizing complementary approaches, validated by flow cytometric analysis of human and murine macrophage subsets and conditional genetic loss and gain of function, we uncover a maladaptive role for myeloid AXL during IRI in the heart.
View Article and Find Full Text PDFTransplantation tolerance is achieved when recipients are unresponsive to donor alloantigen yet mobilize against third-party antigens, including virus. After transplantation, cytomegalovirus (CMV) reactivation in latently-infected transplants reduces allograft viability. To determine if pre-tolerized recipients are resistant to viral dissemination in this setting, we transfused chemically-fixed donor splenocytes (1-ethyl-3- (3'-dimethyl-aminopropyl)-carbo-diimide (ECDI)-treated splenocytes (ECDIsp)) to induce donor antigen tolerance without immunosuppression.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2020
In humans, loss of central tolerance for the cardiac self-antigen α-myosin heavy chain (α-MHC) leads to circulation of cardiac autoreactive T cells and renders the heart susceptible to autoimmune attack after acute myocardial infarction (MI). MI triggers profound tissue damage, releasing danger signals and self-antigen by necrotic cardiomyocytes, which lead to recruitment of inflammatory monocytes. We hypothesized that excessive inflammation by monocytes contributes to the initiation of adaptive immune responses to cardiac self-antigen.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2019
Objective: Extracellular vesicles secreted by cardiosphere-derived cells (CDC) polarize macrophages toward a distinctive phenotype with enhanced phagocytic capacity (M). These changes underlie cardioprotection by CDC and by the parent CDCs, notably attenuating the no-reflow phenomenon following myocardial infarction, but the mechanisms are unclear. Here, we tested the hypothesis that M are especially effective at scavenging debris from dying cells (ie, efferocytosis) to attenuate irreversible damage post-myocardial infarction.
View Article and Find Full Text PDFThere is a growing number of individuals living with heart failure (HF) with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF). Long-term prognosis remains poor in both cases, especially in HFpEF, which is rising in incidence and lacks effective therapeutics. In both HFrEF and HFpEF, there is evidence that elevated inflammatory biomarkers, implicating innate immune cells such as macrophages, are associated with worsened clinical outcomes.
View Article and Find Full Text PDFDuring wound injury, efferocytosis fills the macrophage with a metabolite load nearly equal to the phagocyte itself. A timely question pertains to how metabolic phagocytic signaling regulates the signature anti-inflammatory macrophage response. Here we report the metabolome of activated macrophages during efferocytosis to reveal an interleukin-10 (IL-10) cytokine escalation that was independent of glycolysis yet bolstered by apoptotic cell fatty acids and mitochondrial β-oxidation, the electron transport chain, and heightened coenzyme NAD.
View Article and Find Full Text PDFSemin Immunopathol
November 2018
Post-transplant immunosuppression has reduced the incidence of T cell-mediated acute rejection, yet long-term cardiac graft survival rates remain a challenge. An important determinant of chronic solid organ allograft complication is accelerated vascular disease of the transplanted graft. In the case of cardiac allograft vasculopathy (CAV), the precise cellular etiology remains inadequately understood; however, histologic evidence hints at the accumulation and activation of innate phagocytes as a causal contributing factor.
View Article and Find Full Text PDFRecipient infusion of donor apoptotic cells is an emerging strategy for inducing robust transplantation tolerance. Daily clearance of billions of self-apoptotic cells relies on homeostatic engagement of phagocytic receptors, in particular, receptors of the tyrosine kinase family TAM (Tyro3, Axl, and MerTK), to maintain self-tolerance. However, an outstanding question is if allogeneic apoptotic cells trigger the same receptor system for inducing allogeneic tolerance.
View Article and Find Full Text PDFPhagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells.
View Article and Find Full Text PDFOur data suggest that, after a myocardial infarction, integrin-associated protein CD47 on cardiac myocytes is elevated. In culture, increased CD47 on the surface of dying cardiomyocytes impairs phagocytic removal by immune cell macrophages. After myocardial ischemia and reperfusion, acute CD47 inhibition with blocking antibodies enhanced dead myocyte clearance by cardiac phagocytes and also improved the resolution of cardiac inflammation, reduced infarct size, and preserved cardiac contractile function.
View Article and Find Full Text PDFRationale: Clinical benefits of reperfusion after myocardial infarction are offset by maladaptive innate immune cell function, and therapeutic interventions are lacking.
Objective: We sought to test the significance of phagocytic clearance by resident and recruited phagocytes after myocardial ischemia reperfusion.
Methods And Results: In humans, we discovered that clinical reperfusion after myocardial infarction led to significant elevation of the soluble form of MerTK (myeloid-epithelial-reproductive tyrosine kinase; ie, soluble MER), a critical biomarker of compromised phagocytosis by innate macrophages.
Background: Kawasaki disease (KD) is widely viewed as an acute arteritis. However, our pathologic studies show that chronic coronary arteritis can persist long after disease onset and is closely linked with arterial stenosis. Transcriptome profiling of acute KD arteritis tissues revealed upregulation of T lymphocyte, type I interferon, and allograft inflammatory factor-1 (AIF1) genes.
View Article and Find Full Text PDFHypoxia-inducible factor (HIF)-α isoforms regulate key macrophage (MΦ) functions during ischemic inflammation. HIF-2α drives proinflammatory cytokine production; however, the requirements for HIF-2α during other key MΦ functions, including phagocytosis, are unknown. In contrast to HIF-1α, HIF-2α was not required for hypoxic phagocytic uptake.
View Article and Find Full Text PDFJ Mol Cell Cardiol
October 2015
Background: Mobilization of the innate immune response to clear and metabolize necrotic and apoptotic cardiomyocytes is a prerequisite to heart repair after cardiac injury. Suboptimal kinetics of dying myocyte clearance leads to secondary necrosis, and in the case of the heart, increased potential for collateral loss of neighboring non-regenerative myocytes. Despite the importance of myocyte phagocytic clearance during heart repair, surprisingly little is known about its underlying cell and molecular biology.
View Article and Find Full Text PDF