Electron microscopes are ubiquitous across the scientific landscape and have been improved to achieve ever smaller beam spots, a key parameter that determines the instrument's resolution. However, the traditional techniques to characterize the electron beam have limited effectiveness for today's instruments. Consequently, there is an ongoing need to develop detection technologies that can potentially measure the smallest electron beam, which is valuable for the continual advancement of microscope performance.
View Article and Find Full Text PDFA method is presented to determine the spatial distribution of electrons in the focused beam of a scanning electron microscope (SEM). Knowledge of the electron distribution is valuable for characterizing and monitoring SEM performance, as well as for modeling and simulation in computational scanning electron microscopy. Specifically, it can be used to characterize astigmatism as well as study the relationship between beam energy, beam current, working distance, and beam shape and size.
View Article and Find Full Text PDF