One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use.
View Article and Find Full Text PDFTherapeutic ultrasound is an established technique for biomodulation used by physical therapists. Typically it is used to deliver energy locally for the purpose of altering tissue plasticity and increasing local circulation. Access to ultrasound therapy has been limited by equipment and logistic requirements, which has reduced the overall efficacy of the therapy.
View Article and Find Full Text PDFProc IEEE Annu Northeast Bioeng Conf
April 2014
Osteoarthritis is one of the leading causes of disability in the aging population. Long duration, low intensity therapeutic ultrasound has had promising impact in animal models to slow the progression of the disease and provide joint relief. Two pilot studies were conducted using a novel, wearable platform for delivering ultrasound to evaluate the potential clinical benefits of ultrasound therapy on knee osteoarthritis.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2016
One of the major challenges in the design of a new class of medical device is ensuring that the device will have a safe and effective user interface for the intended users. Human Factors Engineering addresses these concerns through direct study of how a user interacts with newly designed devices with unique features. In this study, a novel long duration, low intensity therapeutic ultrasound device is tested by 20 end users representative of the intended user population.
View Article and Find Full Text PDFUltrasound therapy for pain and healing is a versatile treatment modality for musculoskeletal conditions that is used daily in rehabilitation clinics around the world. Our group designed and constructed a wearable, battery-operated, low-intensity therapeutic ultrasound (LITUS) device that patients could self-apply and operate during daily activity for up to 6 h. Thirty patients with chronic trapezius myofascial pain evaluated the LITUS system in a double-blind, placebo-controlled, 10-d study under institutional review board approval.
View Article and Find Full Text PDFThis study investigated the impact of cadherin binding differences on both cell sorting and GTPase activation. The use of N-terminal domain point mutants of Xenopus C-cadherin enabled us to quantify binding differences and determine their effects on cadherin-dependent functions without any potential complications arising as a result of differences in cytodomain interactions. Dynamic cell-cell binding measurements carried out with the micropipette manipulation technique quantified the impact of these mutations on the two-dimensional binding affinities and dissociation rates of cadherins in the native context of the cell membrane.
View Article and Find Full Text PDFWe present direct evidence that the N-glycosylation state of neural cadherin impacts the intrinsic kinetics of cadherin-mediated intercellular binding. Micropipette manipulation measurements quantified the effect of N-glycosylation mutations on intercellular binding dynamics. The wild-type protein exhibits a two-stage binding process in which a fast, initial binding step is followed by a short lag and second, slower transition to the final binding stage.
View Article and Find Full Text PDF