We recently reported that the 'hydrophobic patch' (HP) of the Saccharomyces cerevisiae S-phase cyclin Clb5 facilitates its interaction with Orc6 (via its Cy or RXL motif), providing a mechanism that helps prevent rereplication from individual origins. This is the first finding of a biological function for an interaction between a cyclin and a cyclin-binding motif (Cy or RXL motif) in a target protein in Saccharomyces cerevisiae. It is also the first such example involving a B-type cyclin in any organism.
View Article and Find Full Text PDFCyclin-dependent kinases are critical regulators of eukaryotic DNA replication. We show that the S-phase cyclin Clb5 binds stably and directly to the origin recognition complex (ORC). This interaction is mediated by an "RXL" target sequence, or "Cy" motif, in the Orc6 subunit that is recognized by the "hydrophobic patch" region on Clb5.
View Article and Find Full Text PDFUnrestrained E2F activity forces S phase entry and promotes apoptosis through p53-dependent and -independent mechanisms. Here, we show that deregulation of E2F by adenovirus E1A, loss of Rb or enforced E2F-1 expression results in the accumulation of caspase proenzymes through a direct transcriptional mechanism. Increased caspase levels seem to potentiate cell death in the presence of p53-generated signals that trigger caspase activation.
View Article and Find Full Text PDF