Publications by authors named "Matthew D Hurteau"

Historically, fire has been essential in Southwestern US forests. However, a century of fire-exclusion and changing climate created forests which are more susceptible to uncharacteristically severe wildfires. Forest managers use a combination of thinning and prescribed burning to reduce forest density to help mitigate the risk of high-severity fires.

View Article and Find Full Text PDF

As wildfires increase in size and severity, large areas of forest are undergoing substantial increases in shrub cover. In forests where water is the limiting resource, the partitioning of soil water between shrubs and young trees may determine how shrubs affect tree growth and water-stress. Here we evaluated juvenile trees (average age = 32 years) of two dominant conifer species in the southern Sierra Nevada of California (Abies concolor (white fir) and Pinus jeffreyi (Jeffrey pine)) growing in the presence or absence of shrubs.

View Article and Find Full Text PDF

Climate change and disturbance are altering forests and the rates and locations of tree regeneration. In semi-arid forests of the southwestern USA, limitations imposed by hot and dry conditions are likely to influence seedling survival. We examined how the survival of 1-year seedlings of five southwestern US conifer species whose southwestern distributions range from warmer and drier woodlands and forests (Pinus edulis Engelm.

View Article and Find Full Text PDF

The western United States is projected to experience more frequent and severe wildfires in the future due to drier and hotter climate conditions, exacerbating destructive wildfire impacts on forest ecosystems such as tree mortality and unsuccessful post-fire regeneration. While empirical studies have revealed strong relationships between topographical information and plant regeneration, ecological processes in ecosystem models have either not fully addressed topography-mediated effects on the probability of plant regeneration, or the probability is only controlled by climate-related factors, for example, water and light stresses. In this study, we incorporated seedling survival data based on a planting experiment in the footprint of the 2011 Las Conchas Fire into the Photosynthesis and EvapoTranspiration (PnET) extension of the LANDIS-II model by adding topographic and an additional climatic variable to the probability of regeneration.

View Article and Find Full Text PDF

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots.

View Article and Find Full Text PDF
Article Synopsis
  • Fire is a critical part of ecosystems and a tool used by humans, but changing fire patterns due to climate change are causing serious problems for health and infrastructure.
  • The text emphasizes the need for collaborative and inclusive research efforts to address fire threats and to better understand both human and ecological systems.
  • It advocates for a shift towards integrative and predictive approaches in fire science to foster innovation and improve resilience to increasing fire risks in the Anthropocene.
View Article and Find Full Text PDF

Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.

View Article and Find Full Text PDF

Climate change is increasing the severity and duration of drought events experienced by forest ecosystems. Because water is essential for tree physiological processes, the ability of trees to survive prolonged droughts will largely depend on whether they have access to reliable water sources. While many woody plant species exhibit the ability to shift water sources between different depths of soil and rock water in response to changes in climate and water availability, it is unclear if Sierra Nevada conifers exhibit this plasticity.

View Article and Find Full Text PDF

We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires.

View Article and Find Full Text PDF

Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation.

View Article and Find Full Text PDF

Ongoing climate change will alter the carbon carrying capacity of forests as they adjust to climatic extremes and changing disturbance regimes. In frequent-fire forests, increasing drought frequency and severity are already causing widespread tree mortality events, which can exacerbate the carbon debt that has developed as a result of fire exclusion. Forest management techniques that reduce tree density and surface fuels decrease the risk of high-severity wildfire and may also limit drought-induced mortality by reducing competition.

View Article and Find Full Text PDF

Climate influences vegetation directly and through climate-mediated disturbance processes, such as wildfire. Temperature and area burned are positively associated, conditional on availability of vegetation to burn. Fire is a self-limiting process that is influenced by productivity.

View Article and Find Full Text PDF

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.

View Article and Find Full Text PDF

In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels reduction approaches that include mechanical thinning followed by regular prescribed fire are one approach to restore the ability of the ecosystem to tolerate episodic fire and still sequester C.

View Article and Find Full Text PDF

Ecosystem carbon carrying capacity (CCC) is determined by prevailing climate and natural disturbance regimes, conditions that are projected to change significantly. The interaction of changing climate and its effects on disturbance regimes is expected to affect forest regeneration and growth, which may diminish forest carbon (C) stocks and uptake. We modeled landscape C dynamics over 590 years along the latitudinal gradient of the U.

View Article and Find Full Text PDF

Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire.

View Article and Find Full Text PDF

Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species-specific responses to environmental change and the scale of change in overstory species cover.

View Article and Find Full Text PDF

Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance.

View Article and Find Full Text PDF

Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form.

View Article and Find Full Text PDF

Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests.

View Article and Find Full Text PDF

Changing climatic conditions are influencing large wildfire frequency, a globally widespread disturbance that affects both human and natural systems. Understanding how climate change, population growth, and development patterns will affect the area burned by and emissions from wildfires and how populations will in turn be exposed to emissions is critical for climate change adaptation and mitigation planning. We quantified the effects of a range of population growth and development patterns in California on emission projections from large wildfires under six future climate scenarios.

View Article and Find Full Text PDF

Alterations in natural fire patterns have negatively affected fire-prone ecosystems in many ways. The historical range of variability (HRV) concept evolved as a management target for natural vegetation composition and fire regimes in fire-prone ecosystems. HRV-based management inherently assumes that ecosystem resilience is reflected in observed ranges of past vegetation and fire dynamics, typically without knowledge of where thresholds exist beyond these dynamics.

View Article and Find Full Text PDF

Carbon sequestration by forested ecosystems offers a potential climate change mitigation benefit. However, wildfire has the potential to reverse this benefit In the western United States, climate change and land management practices have led to increases in wildfire intensity and size. One potential means of reducing carbon emissions from wildfire is the use of prescribed burning,which consumes less biomass and therefore releases less carbon to the atmosphere.

View Article and Find Full Text PDF

Background: One controversial issue in the larger cap-and-trade debate is the proper use and certification of carbon offsets related to changes in land management. Advocates of an expanded offset supply claim that inclusion of such activities would expand the scope of the program and lower overall compliance costs, while opponents claim that it would weaken the environmental integrity of the program by crediting activities that yield either nonexistent or merely temporary carbon sequestration benefits. Our study starts from the premise that offsets are neither perfect mitigation instruments nor useless "hot air.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: