Publications by authors named "Matthew D Hirschey"

Cysteine is a reactive amino acid central to the catalytic activities of many enzymes. It is also a common target of post-translational modifications (PTMs), such as palmitoylation. This longchain acyl PTM can modify cysteine residues and induce changes in protein subcellular localization.

View Article and Find Full Text PDF

Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel.

View Article and Find Full Text PDF

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Recurrent cancer cells are a major cause of death in breast cancer, especially in patients with high Her2 expression.
  • This study investigates the metabolic changes in breast tumors as they transition through regression, dormancy, and recurrence, using imaging techniques to track energy production shifts.
  • Fast-recurrence tumors change their energy source from glucose to fatty acids, and treatment with a fatty acid inhibitor can enhance glucose uptake and prolong survival, highlighting the importance of timing for effective therapy.
View Article and Find Full Text PDF

Statins are a class of drug widely prescribed for the prevention of cardiovascular disease, with pleiotropic cellular effects. Statins inhibit HMG-CoA reductase (HMGCR), which converts the metabolite HMG-CoA into mevalonate. Recent discoveries have shown HMG-CoA is a reactive metabolite that can non-enzymatically modify proteins and impact their activity.

View Article and Find Full Text PDF

A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways.

View Article and Find Full Text PDF

The consequences of damage to the mitochondrial genome (mtDNA) are poorly understood, although mtDNA is more susceptible to damage resulting from some genotoxicants than nuclear DNA (nucDNA), and many environmental toxicants target the mitochondria. Reports from the toxicological literature suggest that exposure to early-life mitochondrial damage could lead to deleterious consequences later in life (the "Developmental Origins of Health and Disease" paradigm), but reports from other fields often report beneficial ("mitohormetic") responses to such damage. Here, we tested the effects of low (causing no change in lifespan) levels of ultraviolet C (UVC)-induced, irreparable mtDNA damage during early development in Caenorhabditis elegans.

View Article and Find Full Text PDF

Protein modifications modulate nearly every aspect of cell biology in organisms, ranging from Archaea to Eukaryotes. The earliest evidence of covalent protein modifications was found in the early 20th century by studying the amino acid composition of proteins by chemical hydrolysis. These discoveries challenged what defined a canonical amino acid.

View Article and Find Full Text PDF

Targeting a tumor's metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients.

View Article and Find Full Text PDF

Caloric restriction (CR) improves health span and life span of organisms ranging from yeast to mammals. Understanding the mechanisms involved will uncover future interventions for aging-associated diseases. In budding yeast, Saccharomyces cerevisiae, CR is commonly defined by reduced glucose in the growth medium, which extends both replicative and chronological life span (CLS).

View Article and Find Full Text PDF

Rotenone, a mitochondrial complex I inhibitor, has been widely used to study the effects of mitochondrial dysfunction on dopaminergic neurons in the context of Parkinson's disease. Although the deleterious effects of rotenone are well documented, we found that young adult Caenorhabditis elegans showed resistance to 24 and 48 h rotenone exposures. To better understand the response to rotenone in C.

View Article and Find Full Text PDF
Article Synopsis
  • The ubiquitin-proteasome system plays a key role in cell cycle progression, with cyclin F acting as an important adapter protein for the SCF family of E3 ubiquitin ligases.
  • Researchers identified SIRT5, a deacylating enzyme, as a novel substrate of cyclin F, hinting at its role in metabolic processes and the cell cycle.
  • SIRT5 knockout experiments indicate altered cell cycle phases and CDK signaling, suggesting a link between SIRT5 regulation by cyclin F and metabolic activities related to cell cycle control.
View Article and Find Full Text PDF

Sirtuins are a family of proteins that regulate biological processes such as cellular stress and aging by removing posttranslational modifications (PTMs). We recently identified several novel PTMs that can be removed by sirtuin 4 (SIRT4), which is found in mitochondria. We showed that mice with a global loss of SIRT4 [SIRT4-knockout (KO) mice] developed an increase in glucose- and leucine-stimulated insulin secretion, and this was followed by accelerated age-induced glucose intolerance and insulin resistance.

View Article and Find Full Text PDF

The survival and recurrence of dormant tumour cells following therapy is a leading cause of death in cancer patients. The metabolic properties of these cells are likely distinct from those of rapidly growing tumours. Here we show that Her2 down-regulation in breast cancer cells promotes changes in cellular metabolism, culminating in oxidative stress and compensatory upregulation of the antioxidant transcription factor, NRF2.

View Article and Find Full Text PDF

The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription.

View Article and Find Full Text PDF

Background: Chronic alcohol consumption is a significant cause of liver disease worldwide. Several biochemical mechanisms have been linked to the initiation and progression of alcoholic liver disease (ALD) such as oxidative stress, inflammation, and metabolic dysregulation, including the disruption of NAD/NADH. Indeed, an ethanol-mediated reduction in hepatic NAD levels is thought to be one factor underlying ethanol-induced steatosis, oxidative stress, steatohepatitis, insulin resistance, and inhibition of gluconeogenesis.

View Article and Find Full Text PDF

The first domesticated companion animal, the dog, is currently represented by over 190 unique breeds. Across these numerous breeds, dogs have exceptional variation in lifespan (inversely correlated with body size), presenting an opportunity to discover longevity-determining traits. We performed a genome-wide association study on 4169 canines representing 110 breeds and identified novel candidate regulators of longevity.

View Article and Find Full Text PDF

Tumors display profound changes in cellular metabolism, yet how these changes aid the development and growth of tumors is not fully understood. Here we use a multi-omic approach to examine liver carcinogenesis and regeneration, and find that progressive loss of branched-chain amino acid (BCAA) catabolism promotes tumor development and growth. In human hepatocellular carcinomas and animal models of liver cancer, suppression of BCAA catabolic enzyme expression led to BCAA accumulation in tumors, though this was not observed in regenerating liver tissues.

View Article and Find Full Text PDF

Mitochondrial dysfunction is one of many key factors in the etiology of alcoholic liver disease (ALD). Lysine acetylation is known to regulate numerous mitochondrial metabolic pathways, and recent reports demonstrate that alcohol-induced protein acylation negatively impacts these processes. To identify regulatory mechanisms attributed to alcohol-induced protein post-translational modifications, we employed a model of alcohol consumption within the context of wild type (WT), sirtuin 3 knockout (SIRT3 KO), and sirtuin 5 knockout (SIRT5 KO) mice to manipulate hepatic mitochondrial protein acylation.

View Article and Find Full Text PDF

Fatty acid synthesis (FAS) in mitochondria produces a key metabolite called lipoic acid. However, a new study by Van Vranken et al.[1] (Mol.

View Article and Find Full Text PDF

SIRT3 is a nicotinamide adenine dinucleotide (NAD)-dependent mitochondrial protein deacetylase purported to influence metabolism through post-translational modification of metabolic enzymes. Fuel-stimulated insulin secretion, which involves mitochondrial metabolism, could be susceptible to SIRT3-mediated effects. We used CRISPR/Cas9 technology to manipulate SIRT3 expression in β cells, resulting in widespread SIRT3-dependent changes in acetylation of key metabolic enzymes but no appreciable changes in glucose- or pyruvate-stimulated insulin secretion or metabolomic profile during glucose stimulation.

View Article and Find Full Text PDF

Mitochondrial Sirtuin 5 (SIRT5) is an NAD-dependent demalonylase, desuccinylase, and deglutarylase that controls several metabolic pathways. A number of recent studies point to SIRT5 desuccinylase activity being important in maintaining cardiac function and metabolism under stress. Previously, we described a phenotype of increased mortality in whole-body SIRT5KO mice exposed to chronic pressure overload compared with their littermate WT controls.

View Article and Find Full Text PDF

In recent years, our understanding of the scope and diversity of protein post-translational modifications (PTMs) has rapidly expanded. In particular, mitochondrial proteins are decorated with an array of acyl groups that can occur non-enzymatically. Interestingly, these modifying chemical moieties are often associated with intermediary metabolites from core metabolic pathways.

View Article and Find Full Text PDF

Although calorically equivalent to glucose, fructose appears to be more lipogenic, promoting dyslipidemia, fatty liver disease, cardiovascular disease, and diabetes. To better understand how fructose induces lipogenesis, we compared the effects of fructose and glucose on mammalian target of rapamycin complex 1 (mTORC1), which appeared to have both positive and negative effects on lipogenic gene expression. We found that fructose acutely and transiently suppressed mTORC1 signaling and The constitutive activation of mTORC1 reduced hepatic lipogenic gene expression and produced hypotriglyceridemia after 1 week of fructose feeding.

View Article and Find Full Text PDF

Mitochondrial network remodeling between fused and fragmented states facilitates mitophagy, interaction with other organelles, and metabolic flexibility. Aging is associated with a loss of mitochondrial network homeostasis, but cellular processes causally linking these changes to organismal senescence remain unclear. Here, we show that AMP-activated protein kinase (AMPK) and dietary restriction (DR) promote longevity in C.

View Article and Find Full Text PDF