Publications by authors named "Matthew D Fountain"

Vascular damage and inflammation are limiting toxic effects of lung cancer radiotherapy, which lead to pneumonitis and pulmonary fibrosis. We have demonstrated that soy isoflavones (SIF) mitigate these toxic effects at late time points after radiation. However, the process by which SIF impacts the onset of radiation-induced inflammation remains to be elucidated.

View Article and Find Full Text PDF

Objective: The negative effects of incidental radiation on the heart and its vessels, particularly in the treatment of locally advanced non-small cell lung cancer, esophageal cancer, left-sided breast cancer, and lymphoma, are known. Late cardiac events induced by radiotherapy including coronary artery disease, ischemia, congestive heart failure, and myocardial infarction can manifest months to years after radiotherapy. We have previously demonstrated that soy isoflavones mitigate inflammatory responses induced in lungs by thoracic irradiation resulting in decreased vascular damage, inflammation, and fibrosis.

View Article and Find Full Text PDF

Introduction: Radiation therapy for lung cancer causes pneumonitis and fibrosis. Soy isoflavones protect against radiation-induced lung injury, but the mediators of radioprotection remain unclear. We investigated the effect of radiation on myeloid-derived suppressor cells (MDSCs) in the lung and their modulation by soy isoflavones for a potential role in protection from radiation-induced lung injury.

View Article and Find Full Text PDF

Background: We previously demonstrated that tumor irradiation potentiates cancer vaccines using genetic modification of tumor cells in murine tumor models. To investigate whether tumor irradiation augments the immune response to MUC1 tumor antigen, we have tested the efficacy of tumor irradiation combined with an MVA-MUC1-IL2 cancer vaccine (Transgene TG4010) for murine renal adenocarcinoma (Renca) cells transfected with MUC1.

Methods: Established subcutaneous Renca-MUC1 tumors were treated with 8 Gy radiation on day 11 and peritumoral injections of MVA-MUC1-IL2 vector on day 12 and 17, or using a reverse sequence of vaccine followed by radiation.

View Article and Find Full Text PDF

Introduction: Radiation therapy for lung cancer is limited by toxicity to normal lung tissue that results from an inflammatory process, leading to pneumonitis and fibrosis. Soy isoflavones mitigate inflammatory infiltrates and radiation-induced lung injury, but the cellular immune mediators involved in the radioprotective effect are unknown.

Methods: Mice received a single dose of 10 Gy radiation delivered to the lungs and daily oral treatment of soy isoflavones.

View Article and Find Full Text PDF

Introduction: Lung cancer patients receiving radiotherapy present with acute esophagitis and chronic fibrosis, as a result of radiation injury to esophageal tissues. We have shown that soy isoflavones alleviate pneumonitis and fibrosis caused by radiation toxicity to normal lung. The effect of soy isoflavones on esophagitis histopathological changes induced by radiation was investigated.

View Article and Find Full Text PDF