Publications by authors named "Matthew D Dyer"

Article Synopsis
  • Researchers have developed a method for single-molecule protein sequencing that accurately identifies peptide sequences in real time.
  • This technique uses dye-labeled amino acid recognizers and aminopeptidases to probe single peptides while recording fluorescence data on a semiconductor chip.
  • The method shows potential for detailed analysis of proteins, including the ability to detect single amino acid changes and modifications, paving the way for more accessible proteomic research.
View Article and Find Full Text PDF

Background: Historically, identification of causal agents of disease has relied heavily on the ability to culture the organism in the laboratory and/or the use of pathogen-specific antibodies or sequence-based probes. However, these methods can be limiting: Even highly sensitive PCR-based assays must be continually updated due to signature degradation as new target strains and near neighbors are sequenced. Thus, there has been a need for assays that do not suffer as greatly from these limitations and/or biases.

View Article and Find Full Text PDF

Gastric cancer is the most common cancer in Asia and most developing countries. Despite the use of multimodality therapeutics, it remains the second leading cause of cancer death in the world. To identify the molecular underpinnings of gastric cancer in the Asian population, we applied an RNA-sequencing approach to gastric tumor and noncancerous specimens, generating 680 million informative short reads to quantitatively characterize the entire transcriptome of gastric cancer (including mRNAs and miRNAs).

View Article and Find Full Text PDF

HIV Dependency Factors (HDFs) are a class of human proteins that are essential for HIV replication, but are not lethal to the host cell when silenced. Three previous genome-wide RNAi experiments identified HDF sets with little overlap. We combine data from these three studies with a human protein interaction network to predict new HDFs, using an intuitive algorithm called SinkSource and four other algorithms published in the literature.

View Article and Find Full Text PDF

Background: Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions.

View Article and Find Full Text PDF

Background: Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.

Methodology: In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens.

View Article and Find Full Text PDF

To support their replication, viruses take advantage of numerous cellular factors and processes. Recent large-scale screens have identified hundreds of such factors, yet little is known about how viruses exploit any of these. Influenza virus infection post-translationally activates P58(IPK), a cellular inhibitor of the interferon-induced, dsRNA-activated eIF2alpha kinase, PKR.

View Article and Find Full Text PDF

Several respiratory viruses, including influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV), produce more severe disease in the elderly, yet the molecular mechanisms governing age-related susceptibility remain poorly studied. Advanced age was significantly associated with increased SARS-related deaths, primarily due to the onset of early- and late-stage acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Infection of aged, but not young, mice with recombinant viruses bearing spike glycoproteins derived from early human or palm civet isolates resulted in death accompanied by pathological changes associated with ARDS.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) play a vital role in initiating infection in a number of pathogens. Identifying which interactions allow a pathogen to infect its host can help us to understand methods of pathogenesis and provide potential targets for therapeutics. Public resources for studying host-pathogen systems, in particular PPIs, are scarce.

View Article and Find Full Text PDF

Infectious diseases result in millions of deaths each year. Mechanisms of infection have been studied in detail for many pathogens. However, many questions are relatively unexplored.

View Article and Find Full Text PDF

Motivation: Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins.

View Article and Find Full Text PDF

Background: MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data.

View Article and Find Full Text PDF