Cold Spring Harb Protoc
October 2024
The antigen-binding fragment (Fab) is the ∼50-kDa monovalent arm of an antibody molecule. In the laboratory, the Fab can be produced via either enzymatic digestion or recombinant expression, and its use facilitates the accurate assessment of affinity and specificity of monoclonal antibodies. The high melting temperature of the Fab, together with its low tendency to aggregate and ready conversion to natural and nonnatural immunoglobulin (Ig) formats (without affecting antigen binding properties), have made it a preferred format for phage display, as well as a tool for accurate assessment of affinity, specificity, and developability of monoclonal antibodies.
View Article and Find Full Text PDFSiglec-6 is a lectin receptor with restricted expression in the placenta, mast cells and memory B-cells. Although Siglec-6 is expressed in patients with chronic lymphocytic leukemia (CLL), its pathophysiological role has not been elucidated. We describe here a role for Siglec-6 in migration and adhesion of CLL B cells to CLL- bone marrow stromal cells (BMSCs) in vitro and compromised migration to bone marrow and spleen in vivo.
View Article and Find Full Text PDFMonoclonal antibody (mAb)-based biologics are well established treatments of cancer. Antibody discovery campaigns are typically directed at a single target of interest, which inherently limits the possibility of uncovering novel antibody specificities or functionalities. Here, we present a target-unbiased approach for antibody discovery that relies on generating mAbs against native target cell surfaces via phage display.
View Article and Find Full Text PDFGenetically and phenotypically identical immune cell populations can be highly heterogenous in terms of their immune functions and protein secretion profiles. The microfluidic chip-based single-cell highly multiplexed secretome proteomics enables characterization of cellular heterogeneity of immune responses at different cellular and molecular layers. Increasing evidence has demonstrated that polyfunctional T cells that simultaneously produce 2+ proteins per cell at the single-cell level are key effector cells that contribute to the development of potent and durable cellular immunity against pathogens and cancers.
View Article and Find Full Text PDFBackground: Despite numerous therapeutic options, safe and curative therapy is unavailable for most patients with chronic lymphocytic leukemia (CLL). A drawback of current therapies such as the anti-CD20 monoclonal antibody (mAb) rituximab is the elimination of all healthy B cells, resulting in impaired humoral immunity. We previously reported the identification of a patient-derived, CLL-binding mAb, JML-1, and identified sialic acid-binding immunoglobulin-like lectin-6 (Siglec-6) as the target of JML-1.
View Article and Find Full Text PDFBackground: The mechanisms regulating CD8 T cell migration to nonlymphoid tissue during inflammation have not been fully elucidated, and the migratory properties of effector memory CD8 T cells that re-express CD45RA (TEMRA CD8 T cells) remain unclear, despite their roles in autoimmune diseases and allotransplant rejection.
Methods: We used single-cell proteomic profiling and functional testing of CD8 T cell subsets to characterize their effector functions and migratory properties in healthy volunteers and kidney transplant recipients with stable or humoral rejection.
Results: We showed that humoral rejection of a kidney allograft is associated with an accumulation of cytolytic TEMRA CD8 T cells in blood and kidney graft biopsies.
Acute myeloid leukemia (AML) remains a difficult disease to treat disease. In a phase 2 clinical trial in patients with relapsed/refractory AML, combining the hypomethylating agent, azacitidine, with the PD-1 checkpoint inhibitor, nivolumab, demonstrated encouraging response rates (33%), median event-free, and overall survival, compared with a historical cohort of contemporary patients treated with azacitidine-based therapies, with an acceptable safety profile. Biomarkers of response are yet to be determined.
View Article and Find Full Text PDFThe only current curative treatment for chronic lymphocytic leukemia (CLL) is allogenic hematopoietic stem cell transplantation. Chimeric antigen receptor treatment targeting CD19 for CLL achieved some complete responses, suggesting the need for alternative or combinational therapies to achieve a more robust response. In this work, we evaluated CAR-T cells specific for Siglec-6, an antigen expressed in CLL, as a novel CAR-T cell treatment for CLL.
View Article and Find Full Text PDFThe active sites of hundreds of human α-ketoglutarate (αKG) and Fe(II)-dependent dioxygenases are exceedingly well preserved, which challenges the design of selective inhibitors. We identified a noncatalytic cysteine (Cys481 in KDM5A) near the active sites of KDM5 histone H3 lysine 4 demethylases, which is absent in other histone demethylase families, that could be explored for interaction with the cysteine-reactive electrophile acrylamide. We synthesized analogs of a thienopyridine-based inhibitor chemotype, namely, 2-((3-aminophenyl)(2-(piperidin-1-yl)ethoxy)methyl)thieno[3,2- b]pyridine-7-carboxylic acid (N70) and a derivative containing a (dimethylamino)but-2-enamido)phenyl moiety (N71) designed to form a covalent interaction with Cys481.
View Article and Find Full Text PDFAlthough the 5-year survival rate of chronic lymphocytic leukemia (CLL) patients has risen to >80%, the only potentially curative treatment is allogeneic hematopoietic stem cell transplantation (alloHSCT). To identify possible new monoclonal antibody (mAb) drugs and targets for CLL, we previously developed a phage display-based human mAb platform to mine the antibody repertoire of patients who responded to alloHSCT. We had selected a group of highly homologous post-alloHSCT mAbs that bound to an unknown CLL cell surface antigen.
View Article and Find Full Text PDFAssessment of the interactions between a drug and its protein target in a physiologically relevant cellular environment constitutes a major challenge in the pre-clinical drug discovery space. The Cellular Thermal Shift Assay (CETSA) enables such an assessment by quantifying the changes in the thermal stability of proteins upon ligand binding in intact cells. Here, we present the development and validation of a homogeneous, standardized, target-independent, and high-throughput (384- and 1536-well formats) CETSA platform that uses a split Nano Luciferase approach (SplitLuc CETSA).
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
March 2017
The rapid spread of the recent Zika virus (ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 of Zika virus (ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively.
View Article and Find Full Text PDF