A highly gas permeable polymer with exceptional size selectivity is prepared by fusing triptycene units together via a poly-merization reaction involving Tröger's base formation. The extreme rigidity of this polymer of intrinsic microporosity (PIM-Trip-TB) facilitates gas permeability data that lie well above the benchmark 2008 Robeson upper bounds for the important O2 /N2 and H2 /N2 gas pairs.
View Article and Find Full Text PDFMicroporous polymers of extreme rigidity are required for gas-separation membranes that combine high permeability with selectivity. We report a shape-persistent ladder polymer consisting of benzene rings fused together by inflexible bridged bicyclic units. The polymer's contorted shape ensures both microporosity-with an internal surface area greater than 1000 square meters per gram-and solubility so that it is readily cast from solution into robust films.
View Article and Find Full Text PDF