Publications by authors named "Matthew Cowley"

Article Synopsis
  • * Three independent raters analyzed subjects' foot movements over multiple days while employing a four-segment foot model and performed statistical analysis to evaluate variability and differences by foot type during the stance phase of gait.
  • * Findings indicated that while static measures showed significant differences among foot types, the MFM's ability to detect dynamic differences was limited, particularly with respect to certain movements like the hallux to forefoot range of motion; thus, its sensitivity for identifying variations between pathologic and non-pathologic foot
View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) is an incurable myopathy linked to the over-expression of the myotoxic transcription factor DUX4. Targeting DUX4 is the leading therapeutic approach, however, it is only detectable in 0.1-3.

View Article and Find Full Text PDF

Despite record-breaking devices, interfaces in perovskite solar cells are still poorly understood, inhibiting further progress. Their mixed ionic-electronic nature results in compositional variations at the interfaces, depending on the history of externally applied biases. This makes it difficult to measure the band energy alignment of charge extraction layers accurately.

View Article and Find Full Text PDF

Aims: We prospectively examined the relationship between site-specific peak plantar pressure (PPP) and ulcer risk. Researchers have previously reported associations between diabetic foot ulcer and elevated plantar foot pressure, but the effect of location-specific pressures has not been studied.

Methods: Diabetic subjects (n=591) were enrolled from a single VA hospital.

View Article and Find Full Text PDF

The symptomatic flatfoot deformity (pes planus with peri-talar subluxation) can be a debilitating condition. Cadaveric flatfoot models have been employed to study the etiology of the deformity, as well as invasive and noninvasive surgical treatment strategies, by evaluating bone positions. Prior cadaveric flatfoot simulators, however, have not leveraged industrial robotic technologies, which provide several advantages as compared with the previously developed custom fabricated devices.

View Article and Find Full Text PDF

Aims: We assessed baseline clinical foot shape for 2939 feet of diabetic subjects who were monitored prospectively for foot ulceration.

Methods: Assessments included hammer/claw toes, hallux valgus, hallux limitus, prominent metatarsal heads, bony prominences, Charcot deformity, plantar callus, foot type, muscle atrophy, ankle and hallux mobility, and neuropathy. Risk factors were linked to ulcer occurrence and location via a Cox proportional hazards model.

View Article and Find Full Text PDF

We have developed a robotic gait simulator (RGS) by leveraging a 6-degree of freedom parallel robot, with the goal of overcoming three significant challenges of gait simulation, including: 1) operating at near physiologically correct velocities; 2) inputting full scale ground reaction forces; and 3) simulating motion in all three planes (sagittal, coronal and transverse). The robot will eventually be employed with cadaveric specimens, but as a means of exploring the capability of the system, we have first used it with a prosthetic foot. Gait data were recorded from one transtibial amputee using a motion analysis system and force plate.

View Article and Find Full Text PDF

Gait analysis models typically analyze the ankle joint complex and treat the foot as a rigid segment. Such models are inadequate for clinical decision making for patients with foot impairments. While previous multisegment foot models have been presented, no comprehensive kinematic and kinetic databases for normal gait exist.

View Article and Find Full Text PDF