Room-temperature printing of conductive traces has the potential to facilitate the direct writing of electronic tattoos and other medical devices onto biological tissue, such as human skin. However, in order to achieve sufficient electrical performance, the vast majority of conductive inks require biologically harmful post-processing techniques. In addition, most printed conductive traces will degrade with bending stresses that occur from everyday movement.
View Article and Find Full Text PDFAnthropomorphic breast phantoms mimic patient anatomy in order to evaluate clinical mammography and digital breast tomosynthesis system performance. Our goal is to create a modular phantom with an anthropomorphic region to allow for improved lesion and calcification detection as well as a uniform region to evaluate standard quality control (QC) metrics. Previous versions of this phantom used commercial photopolymer inkjet three-dimensional printers to recreate breast anatomy using four surfaces that were fabricated with commercial materials spanning only a limited breast density range of 36% to 64%.
View Article and Find Full Text PDFMaterials that retain a high conductivity under strain are essential for wearable electronics. This article describes a conductive, stretchable composite consisting of a Cu-Ag core-shell nanowire felt infiltrated with a silicone elastomer. This composite exhibits a retention of conductivity under strain that is superior to any composite with a conductivity greater than 1000 S cm.
View Article and Find Full Text PDFPrintable electronics has the potential to drastically reduce the environmental and economic costs associated with the production of electronic devices, as well as enable rapid prototyping of circuits and their printing on demand, similar to what 3D printing has done for structural objects. A major barrier to the realization of printable computers that can run programs is the lack of a solution-coatable non-volatile memory with performance metrics comparable to silicon-based devices. Here we demonstrate a non-volatile memory based on Cu-SiO core-shell nanowires that can be printed from solution and exhibits on-off ratios of 10, switching speeds of 50 ns, a low operating voltage of 2 V, and operates for at least 10 cycles without failure.
View Article and Find Full Text PDFThe low performance or high cost of commercially available conductive inks limits the advancement of printed electronics. This article studies the explosion of metal wires in aqueous solutions as a simple, low-cost, and environmentally friendly method to prepare metallic nanoparticles consisting of Cu and Cu alloys for use in affordable, highly conductive inks. Addition of 0.
View Article and Find Full Text PDF