is a ubiquitous bacterium and a notorious opportunistic pathogen that forms biofilm structures in response to many environmental cues. Biofilm formation includes attachment to surfaces and the production of the exopolysaccharide Pel, which is present in both the PAO1 and PA14 laboratory strains of . Biofilms help protect bacterial cells from host defenses and antibiotics and abet infection.
View Article and Find Full Text PDFUnlabelled: The Gram-positive model organism responds to environmental stressors by activating the alternative sigma factor σ. The sensing apparatus upstream of σ activation is thought to consist of cytoplasmic stressosomes-megadalton-sized protein complexes that include five paralogous proteins known as RsbRs. The RsbRs are presumed to be involved in stress sensing and the subsequent response.
View Article and Find Full Text PDFis an opportunistic pathogen that is widely known for infecting patients with underlying conditions. This species often survives antibiotic therapy by forming biofilms, in which the cells produce a protective extracellular matrix. also produces virulence factors that enhance its ability to cause disease.
View Article and Find Full Text PDFThe opportunistic bacterium Pseudomonas aeruginosa uses the LasR-I quorum-sensing system to increase resistance to the aminoglycoside antibiotic tobramycin. Paradoxically, -null mutants are commonly isolated from chronic human infections treated with tobramycin, suggesting there may be a mechanism that permits the emergence of -null mutants under tobramycin selection. We hypothesized that some other genetic mutations that emerge in these isolates might modulate the effects of -null mutations on antibiotic resistance.
View Article and Find Full Text PDFThe bacterial nitrogen-related phosphotransfer (PTS; here, Nitro-PTS) system bears homology to well-known PTS systems that facilitate saccharide import and phosphorylation. The Nitro-PTS comprises an enzyme I (EI), PtsP; an intermediate phosphate carrier, PtsO; and a terminal acceptor, PtsN, which is thought to exert regulatory effects that depend on its phosphostate. For instance, biofilm formation by Pseudomonas aeruginosa can be impacted by the Nitro-PTS, as deletion of either or suppresses Pel exopolysaccharide production and additional deletion of elevates Pel production.
View Article and Find Full Text PDFPseudomonas aeruginosa commonly infects hospitalized patients and the lungs of individuals with cystic fibrosis. This species is known for forming biofilms, which are communities of bacterial cells held together and encapsulated by a self-produced extracellular matrix. The matrix provides extra protection to the constituent cells, making P.
View Article and Find Full Text PDFThe opportunistic bacterium Pseudomonas aeruginosa uses the LasR-I quorum sensing system to increase resistance to the aminioglycoside antibiotic tobramycin. Paradoxically, lasR-null mutants are commonly isolated from chronic human infections treated with tobramycin, suggesting there may be a mechanism allowing the lasR-null mutants to persist under tobramycin selection. We hypothesized that the effects of inactivating lasR on tobramycin resistance might be dependent on the presence or absence of other gene mutations in that strain, a phenomenon known as epistasis.
View Article and Find Full Text PDFBacteria use a variety of systems to sense stress and mount an appropriate response to ensure fitness and survival. Bacillus subtilis uses stressosomes-cytoplasmic multiprotein complexes-to sense environmental stressors and enact the general stress response by activating the alternative sigma factor σ. Each stressosome includes 40 RsbR proteins, representing four paralogous (RsbRA, RsbRB, RsbRC, and RsbRD) putative stress sensors.
View Article and Find Full Text PDFTricarboxylates such as citrate are the preferred carbon sources for Pseudomonas aeruginosa, an opportunistic pathogen that causes chronic human infections. However, the membrane transport process for the tricarboxylic acid cycle intermediates citrate and -aconitate is poorly characterized. Transport is thought to be controlled by the TctDE two-component system, which mediates transcription of the putative major transporter OpdH.
View Article and Find Full Text PDFPyocins are interbacterial killing complexes made by Pseudomonas aeruginosa primarily to enact intraspecific competition. DNA damage and the ensuing activation of RecA initiate canonical pyocin expression. We recently discovered that deletion of , which encodes a tyrosine recombinase involved in chromosome decatenation, markedly elevates basal pyocin production independently of RecA.
View Article and Find Full Text PDFPyocins are phage tail-like protein complexes that can be used by Pseudomonas aeruginosa to enact intraspecies competition by killing competing strains. The pyocin gene cluster also encodes holin and lysin enzymes that lyse producer cells to release the pyocins. The best-known inducers of pyocin production under laboratory conditions are DNA-damaging agents, including fluoroquinolone antibiotics, that activate the SOS response.
View Article and Find Full Text PDFMicrofluidic technology overcomes many of the limitations to traditional analytical methods in microbiology. Unlike bulk-culture methods, it offers single-cell resolution and long observation times spanning hundreds of generations; unlike agarose pad-based microscopy, it has uniform growth conditions that can be tightly controlled. Because the continuous flow of growth medium isolates the cells in a microfluidic device from unpredictable variations in the local chemical environment caused by cell growth and metabolism, authentic changes in gene expression and cell growth in response to specific stimuli can be more confidently observed.
View Article and Find Full Text PDFEntry into sporulation in is governed by a phosphorelay in which phosphoryl groups from a histidine kinase are successively transferred via relay proteins to the response regulator Spo0A. Spo0A~P, in turn, sets in motion events that lead to asymmetric division and activation of the cell-specific transcription factor σ, a hallmark for entry into sporulation. Here, we have used a microfluidics-based platform to investigate the activation of Spo0A and σ in individual cells held under constant, sporulation-inducing conditions.
View Article and Find Full Text PDFBacteria use a variety of stress-sensing systems to sense and respond to diverse stressors and to ensure their survival under adverse conditions. The gram-positive bacterium Bacillus subtilis responds to energy stress (ATP depletion) and to environmental stressors using two distinct stress-sensing pathways that converge on the alternative sigma factor σB to provoke a general stress response. Past efforts to study the σB stress response in bulk culture and on agarose pads were unable to visualize the responses of individual cells under tightly controlled conditions for extended periods of time.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
May 2016
We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert's law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images.
View Article and Find Full Text PDFBacterial type VI secretion is an offensive and defensive weapon that utilizes a molecular warhead to inject toxins into neighboring cells. In this issue of Cell, Whitney et al. report a new class of toxin that disrupts the core metabolism of recipient cells and uncover a surprising requirement for EF-Tu.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic human pathogen whose survival is aided by forming communities known as biofilms, in which cells are encased in a self-produced matrix. We devised a mutant screen based on colony morphology to identify additional genes with previously unappreciated roles in biofilm formation. Our screen, which identified most known biofilm-related genes, also uncovered PA14_16550 and PA14_69700, deletions of which abrogated and augmented biofilm formation respectively.
View Article and Find Full Text PDFSecreted virulence factors of the human pathogen Pseudomonas aeruginosa are often under quorum sensing control. Cells lacking the quorum-sensing regulator LasR show reduced virulence factor production under typical laboratory conditions and are hypo-virulent in short-term animal infection models, yet lasR mutants are frequently associated with long-term infection in cystic fibrosis patients. Here, I show that in stationary-phase or slow-growth conditions, lasR cells continuously and strongly produce the important virulence factor pyocyanin while wild-type cells do not.
View Article and Find Full Text PDFThe physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size.
View Article and Find Full Text PDFThe peptidoglycan (PG) is a macromolecular component of the bacterial cell wall that maintains the shape and integrity of the cell. The PG of Caulobacter crescentus, unlike that of many other Gram-negative bacteria, has repeatedly been shown to contain significant amounts of glycine. This compositional peculiarity has been deemed an intrinsic characteristic of this species.
View Article and Find Full Text PDFCrescentin is a bacterial filament-forming protein that exhibits domain organization features found in metazoan intermediate filament (IF) proteins. Structure-function studies of eukaryotic IFs have been hindered by a lack of simple genetic systems and easily quantifiable phenotypes. Here we exploit the characteristic localization of the crescentin structure along the inner curvature of Caulobacter crescentus cells and the loss of cell curvature associated with impaired crescentin function to analyze the importance of the domain organization of crescentin.
View Article and Find Full Text PDFLife in oligotrophic environments necessitates quick adaptive responses to a sudden lack of nutrients. Secretion of specific degradative enzymes into the extracellular medium is a means to mobilize the required nutrient from nearby sources. The aquatic bacterium Caulobacter crescentus must often face changes in its environment such as phosphate limitation.
View Article and Find Full Text PDFBacteria, like eukaryotes, employ cytoskeletal elements to perform many functions, including cell morphogenesis, cell division, DNA partitioning, and cell motility. They not only possess counterparts of eukaryotic actin, tubulin, and intermediate filament proteins, but they also have cytoskeletal elements of their own. Unlike the rigid sequence and structural conservation often observed for eukaryotic cytoskeletal proteins, the bacterial counterparts can display considerable diversity in sequence and function across species.
View Article and Find Full Text PDFThe propagation of cell shape across generations is remarkably robust in most bacteria. Even when deformations are acquired, growing cells progressively recover their original shape once the deforming factors are eliminated. For instance, straight-rod-shaped bacteria grow curved when confined to circular microchambers, but straighten in a growth-dependent fashion when released.
View Article and Find Full Text PDF