Publications by authors named "Matthew C Stevens"

Background: Aldehyde dehydrogenase 2 (ALDH2) catalyzes the detoxification of aliphatic aldehydes, including acetaldehyde. About 45% of Han Chinese (East Asians), accounting for 8% of humans, carry a single point mutation in ALDH2*2 (E504K) that leads to accumulation of toxic reactive aldehydes.

Methods: Sequencing of a small Mexican cohort and a search in the ExAC genomic database for additional ALDH2 variants common in various ethnic groups was set to identify missense variants.

View Article and Find Full Text PDF

Xerostomia (dry mouth) is the most common side effect of radiation therapy in patients with head and neck cancer and causes difficulty speaking and swallowing. Since aldehyde dehydrogenase 3A1 (ALDH3A1) is highly expressed in mouse salivary stem/progenitor cells (SSPCs), we sought to determine the role of ALDH3A1 in SSPCs using genetic loss-of-function and pharmacologic gain-of-function studies. Using DarkZone dye to measure intracellular aldehydes, we observed higher aldehyde accumulation in irradiated adult murine salisphere cells and in situ in whole murine embryonic salivary glands enriched in SSPCs compared with wild-type glands.

View Article and Find Full Text PDF

Bryostatin 1 is an exceedingly scarce marine-derived natural product that is in clinical development directed at HIV/AIDS eradication, cancer immunotherapy, and the treatment of Alzheimer's disease. Despite this unique portfolio of indications, its availability has been limited and variable, thus impeding research and clinical studies. Here, we report a total synthesis of bryostatin 1 that proceeds in 29 total steps (19 in the longest linear sequence, >80% average yield per step), collectively produces grams of material, and can be scaled to meet clinical needs (~20 grams per year).

View Article and Find Full Text PDF

In 1996, a snapshot of the field of synthesis was provided by many of its thought leaders in a Chemical Reviews thematic issue on "Frontiers in Organic Synthesis". This Accounts of Chemical Research thematic issue on "Synthesis, Design, and Molecular Function" is intended to provide further perspective now from well into the 21st century. Much has happened in the past few decades.

View Article and Find Full Text PDF

The human kinome comprises over 500 protein kinases. When mutated or over-expressed, many play critical roles in abnormal cellular functions associated with cancer, cardiovascular disease and neurological disorders. Here we report a step-economical approach to designed kinase inhibitors inspired by the potent, but non-selective, natural product staurosporine, and synthetically enabled by a novel, complexity-increasing, serialized [5 + 2]/[4 + 2] cycloaddition strategy.

View Article and Find Full Text PDF

Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions.

View Article and Find Full Text PDF

Conventional allenes have not been effective π-reactive 2-carbon components in many intermolecular cycloadditions including metal-catalyzed [5 + 2] cycloadditions. We report herein that rhodium-catalyzed [5 + 2] cycloadditions of propargyltrimethylsilanes and vinylcyclopropanes provide, after in situ protodesilylation, a highly efficient route to formal allene cycloadducts. Propargyltrimethylsilanes function as safe, easily handled synthetic equivalents of gaseous allenes and hard-to-access monosubstituted allenes.

View Article and Find Full Text PDF