Environ Sci Pollut Res Int
September 2014
Embryos, unlike adults, are typically sessile, which allows for an increase in the available metrics that can be used to assess chemical toxicity. We investigate Daphnia magna development rate and oxygen consumption as toxicity metrics and compare them to arrested embryo development using four different techniques with potassium cyanide (KCN) as a common toxicant. The EC50 (95 % CI) for arrested development was 2,535 (1,747-3,677) μg/L KCN.
View Article and Find Full Text PDFSilver nanoparticles (Ag NPs) are gaining popularity as bactericidal agents in commercial products; however, the mechanisms of toxicity (MOT) of Ag NPs to other organisms are not fully understood. It is the goal of this research to determine differences in MOT induced by ionic Ag(+) and Ag NPs in Daphnia magna, by incorporating a battery of traditional and novel methods. Daphnia embryos were exposed to sublethal concentrations of AgNO3 and Ag NPs (130-650 ng/L), with uptake of the latter confirmed by confocal reflectance microscopy.
View Article and Find Full Text PDFSilver nanoparticles (Ag NPs) are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products may lead to an increase in toxic levels of environmental silver, but regulatory control over the use or disposal of such products is lagging due to insufficient assessment on the toxicology of Ag NPs and their rate of release into the environment. In this article we discuss recent research on the transport, activity and fate of Ag NPs at the cellular and organismic level, in conjunction with traditional and recently established methods of nanoparticle characterization.
View Article and Find Full Text PDF