Publications by authors named "Matthew C Good"

Cells contain membrane-bound and membraneless organelles that operate as spatially distinct biochemical niches. However, these subcellular reaction centers lose fidelity with aging and as a result of disease. A grand challenge for biomedicine is restoring or augmenting cellular functionalities.

View Article and Find Full Text PDF

Cells harbour numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein- and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids, resulting in demixing via liquid-liquid phase separation. Proteins harbouring intrinsically disordered regions (IDRs) predominate in membraneless organelles.

View Article and Find Full Text PDF

Cells harbor numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids resulting in demixing via liquid-liquid phase separation (LLPS). Proteins harboring intrinsically disordered regions (IDRs) predominate in membraneless organelles.

View Article and Find Full Text PDF

Human cells tightly control their dimensions, but in some cancers, normal cell size control is lost. In this study we measure cell volumes of epithelial cells from human lung adenocarcinoma progression in situ. By leveraging artificial intelligence (AI), we reconstruct tumor cell shapes in three dimensions (3D) and find airway type 2 cells display up to 10-fold increases in volume.

View Article and Find Full Text PDF

Early embryo development requires maternal-to-zygotic transition, during which transcriptionally silent nuclei begin widespread gene expression during zygotic genome activation (ZGA). ZGA is vital for early cell fating and germ-layer specification, and ZGA timing is regulated by multiple mechanisms. However, controversies remain about whether these mechanisms are interrelated and vary among species and whether the timing of germ-layer-specific gene activation is temporally ordered.

View Article and Find Full Text PDF

Many proteins harboring low complexity or intrinsically disordered sequences (IDRs) are capable of undergoing liquid-liquid phase separation to form mesoscale condensates that function as biochemical niches with the ability to concentrate or sequester macromolecules and regulate cellular activity. Engineered disordered proteins have been used to generate programmable synthetic membraneless organelles in cells. Phase separation is governed by the strength of interactions among polypeptides with multivalency enhancing phase separation at lower concentrations.

View Article and Find Full Text PDF

Early embryogenesis requires rapid division of pluripotent blastomeres, regulated genome activation, precise spatiotemporal signaling to pattern cell fate, and morphogenesis to shape primitive tissue architectures. The complexity of this process has inspired researchers to move beyond simple genetic perturbation into engineered devices and synthetic biology tools to permit temporal and spatial manipulation of the control systems guiding development. By precise alteration of embryo organization, it is now possible to advance beyond basic analytical strategies and directly test the sufficiency of models for developmental regulation.

View Article and Find Full Text PDF

Eukaryotic cells partition enzymes and other cellular components into distinct subcellular compartments to generate specialized biochemical niches. A subclass of these compartments form in the absence of lipid membranes, via liquid-liquid phase separation of proteins to form biomolecular condensates or "membraneless organelles" such as nucleoli, stress granules, and P-bodies. Because of their propensity to form compartments from simple starting materials, membraneless organelles are an attractive target for engineering new functionalities in both living cells and protocells.

View Article and Find Full Text PDF

Subcellular compartmentalization of macromolecules increases flux and prevents inhibitory interactions to control biochemical reactions. Inspired by this functionality, we sought to build designer compartments that function as hubs to regulate the flow of information through cellular control systems. We report a synthetic membraneless organelle platform to control endogenous cellular activities through sequestration and insulation of native proteins.

View Article and Find Full Text PDF

Eukaryotic cells contain a cytoskeletal network comprised of dynamic microtubule filaments whose spatial organization is highly plastic. Specialized microtubule architectures are optimized for different cell types and remodel with the oscillatory cell cycle. These spatially distinct microtubule networks are thought to arise from the activity and localization of microtubule regulators and motors and are further shaped by physical forces from the cell boundary.

View Article and Find Full Text PDF

Early embryo development is characterized by alteration of cellular dimensions and fating of blastomeres. An emerging concept is that cell size and shape drive cellular differentiation during early embryogenesis in a variety of model organisms. In this review, we summarize recent advances that elucidate the contribution of the physical dimensions of a cell to major embryonic transitions and cell fate specification in vivo.

View Article and Find Full Text PDF

Zona Pellucida domain (ZP) proteins are critical components of the body's external-most protective layers, apical extracellular matrices (aECMs). Although their loss or dysfunction is associated with many diseases, it remains unclear how ZP proteins assemble in aECMs. Current models suggest that ZP proteins polymerize via their ZPn subdomains, while ZPc subdomains modulate ZPn behavior.

View Article and Find Full Text PDF

In this issue of Developmental Cell, Mukherjee et al. (2020) investigate control of nuclear growth by live imaging of early embryogenesis, perturbations of blastomere dimensions, and reconstitution in vitro. The authors uncover new mechanisms of nuclear size scaling by the amount of inherited perinuclear ER and duration of interphase.

View Article and Find Full Text PDF

A major event in early embryo development is the awakening of the embryonic genome, a process of large-scale transcriptional induction termed zygotic genome activation (ZGA). To understand how ZGA is controlled temporally and spatially, tools are required to image and quantify nascent transcription in wholemount embryos. In this chapter, we describe a metabolic labeling approach that leverages 5-ethynyl uridine (5-EU) incorporation into newly transcribed RNAs.

View Article and Find Full Text PDF

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules.

View Article and Find Full Text PDF

Release of cargo molecules from cell-like nanocarriers can be achieved by chemical perturbations, including changes to pH and redox state and optical modulation of membrane properties. However, little is known about the kinetics or products of vesicle breakdown due to limitations in real-time imaging at nanometer length scales. Using a library of 12 single-single type photocleavable amphiphilic Janus dendrimers, we developed a self-assembling light-responsive dendrimersome vesicle platform.

View Article and Find Full Text PDF

Protein coacervates serve as hubs to concentrate and sequester proteins and nucleotides and thus function as membraneless organelles to manipulate cell physiology. We have engineered a coacervating protein to create tunable, synthetic membraneless organelles that assemble in response to a single pulse of light. Coacervation is driven by the intrinsically disordered RGG domain from the protein LAF-1, and opto-responsiveness is coded by the protein PhoCl, which cleaves in response to 405 nm light.

View Article and Find Full Text PDF

Reconstructing the functions of living cells using nonnatural components is one of the great challenges of natural sciences. Compartmentalization, encapsulation, and surface decoration of globular assemblies, known as vesicles, represent key early steps in the reconstitution of synthetic cells. Here we report that vesicles self-assembled from amphiphilic Janus dendrimers, called dendrimersomes, encapsulate high concentrations of hydrophobic components and do so more efficiently than commercially available stealth liposomes assembled from phospholipid components.

View Article and Find Full Text PDF

A defining feature of early embryogenesis is the transition from maternal to zygotic control. This transition requires embryo-wide zygotic genome activation (ZGA), but the extent of spatiotemporal coordination of ZGA between individual cells is unknown. Multiple interrelated parameters, including elapsed time, completed cycles of cell division, and cell size may impact ZGA onset; however, the principal determinant of ZGA during vertebrate embryogenesis is debated.

View Article and Find Full Text PDF

Self-assembling dendrimers have facilitated the discovery of periodic and quasiperiodic arrays of supramolecular architectures and the diverse functions derived from them. Examples are liquid quasicrystals and their approximants plus helical columns and spheres, including some that disregard chirality. The same periodic and quasiperiodic arrays were subsequently found in block copolymers, surfactants, lipids, glycolipids, and other complex molecules.

View Article and Find Full Text PDF

Many intrinsically disordered proteins self-assemble into liquid droplets that function as membraneless organelles. Because of their biological importance and ability to colocalize molecules at high concentrations, these protein compartments represent a compelling target for bio-inspired materials engineering. Here we manipulated the intrinsically disordered, arginine/glycine-rich RGG domain from the P granule protein LAF-1 to generate synthetic membraneless organelles with controllable phase separation and cargo recruitment.

View Article and Find Full Text PDF

We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments.

View Article and Find Full Text PDF

Cell-free cytoplasmic extracts prepared from eggs have been used extensively to recapitulate and characterize intracellular events in vitro. Egg extracts can be induced to transit the cell cycle and reconstitute assembly of dynamic structures including the interphase nucleus and the mitotic spindle. In this protocol, methods are described for preparing crude cytoplasmic extracts from eggs and embryos that are arrested in metaphase of the cell cycle.

View Article and Find Full Text PDF

Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncus5vbf5gusm8h5j9968qtp8rck7141d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once