We propose a new mathematical and algorithmic framework for unsupervised image segmentation, which is a critical step in a wide variety of image processing applications. We have found that most existing segmentation methods are not successful on histopathology images, which prompted us to investigate segmentation of a broader class of images, namely those without clear edges between the regions to be segmented. We model these images as occlusions of random images, which we call textures, and show that local histograms are a useful tool for segmenting them.
View Article and Find Full Text PDFWe present a method for identifying colitis in colon biopsies as an extension of our framework for the automated identification of tissues in histology images. Histology is a critical tool in both clinical and research applications, yet even mundane histological analysis, such as the screening of colon biopsies, must be carried out by highly-trained pathologists at a high cost per hour, indicating a niche for potential automation. To this end, we build upon our previous work by extending the histopathology vocabulary (a set of features based on visual cues used by pathologists) with new features driven by the colitis application.
View Article and Find Full Text PDFWe propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation.
View Article and Find Full Text PDF