Publications by authors named "Matthew C Dixon"

Electrochemical quartz crystal microbalance coupled with dissipation (EQCM-D) is employed to investigate the solid electrolyte interphase (SEI) formation and Li insertion/deinsertion into thin film electrodes of tin. Based on the frequency change we find that the initial SEI formation process is rapid before Li insertion but varies significantly with increasing concentration of the additive fluoroethylene carbonate (FEC) in the electrolyte. The extent of dissipation, which represents the film rigidity, increases with cycle number, reflecting film thickening and softening.

View Article and Find Full Text PDF

Understanding the kinetics of dye adsorption and desorption on semiconductors is crucial for optimizing the performance of dye-sensitized solar cells (DSSCs). Quartz crystal microbalance with dissipation monitoring (QCM-D) measures adsorbed mass in real time, allowing determination of binding kinetics. In this work, we characterize adsorption of the common RuBipy dye N3 to the native oxide layer of a planar, sputter-coated titanium surface, simulating the TiO2 substrate of a DSSC.

View Article and Find Full Text PDF

In recent years, there has been a rapid growth in the number of scientific reports in which the quartz crystal microbalance (QCM) technique has played a key role in elucidating various aspects of biological materials and their interactions. This article illustrates some key advances in the development of a special variation of this technique called quartz crystal microbalance with dissipation monitoring (QCM-D). The main feature and advantage of QCM-D, compared with the conventional QCM, is that it in addition to measuring changes in resonant frequency (Deltaf), a simultaneous parameter related to the energy loss or dissipation (DeltaD) of the system is also measured.

View Article and Find Full Text PDF

We report the application of a quartz crystal microbalance with dissipation monitoring (QCM-D) to rheology of mixed-phase micellar systems. This novel application of QCM-D allows for the facile monitoring of complex systems under a variety of conditions. Viscosity measurements were obtained for sodium dodecyl sulfate (SDS) solutions, ranging from 1.

View Article and Find Full Text PDF

Thin nanoporous gold (np-Au) films, ranging in thickness from approximately 40 to 1600 nm, have been prepared by selective chemical etching of Ag from Ag/Au alloy films supported on planar substrates. A combination of scanning electron microscopy (SEM) imaging, synchrotron grazing incidence small angle X-ray scattering, and N2 adsorption surface area measurements shows the films to exhibit a porous structure with intertwined gold fibrils exhibiting a spectrum of feature sizes and spacings ranging from several to hundreds of nanometers. Spectroscopic ellipsometry measurements (300-800 nm) reveal the onset of surface plasmon types of features with increase of film thicknesses into the approximately 200 nm film thickness range.

View Article and Find Full Text PDF