Proteins can be targeted for degradation by engineering biomolecules that direct them to the eukaryotic ubiquitination machinery. For instance, the fusion of an E3 ubiquitin ligase to a suitable target binding domain creates a 'biological Proteolysis-Targeting Chimera' (bioPROTAC). Here we employ an analogous approach where the target protein is recruited directly to a human E2 ubiquitin-conjugating enzyme via an attached target binding domain.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) have emerged as one of the most innovative new genetic drug modalities. However, their high molecular weight limits their bioavailability for otherwise-treatable neurological disorders. We investigated conjugation of ASOs to an antibody against the murine transferrin receptor, 8D3130, and evaluated it via systemic administration in mouse models of the neurodegenerative disease spinal muscular atrophy (SMA).
View Article and Find Full Text PDFReceptor-mediated transcytosis (RMT) is used to enhance the delivery of monoclonal antibodies (mAb) into the central nervous system (CNS). While the binding to endogenous receptors on the brain capillary endothelial cells (BCECs) may facilitate the uptake of mAbs in the brain, a strong affinity for the receptor may hinder the efficiency of transcytosis. To quantitatively investigate the effect of binding affinity on the pharmacokinetics (PK) of anti-transferrin receptor (TfR) mAbs in different regions of the rat brain, we conducted a microdialysis study to directly measure the concentration of free mAbs at different sites of interest.
View Article and Find Full Text PDFUnlabelled: The blood-brain barrier (BBB) is a formidable obstacle to the delivery of therapeutics to the brain. Antibodies that bind transferrin receptor (TfR), which is enriched in brain endothelial cells, have been shown to cross the BBB and are being developed as fusion proteins to deliver therapeutic cargos to brain targets. Various antibodies have been developed for this purpose and their in vivo evaluation demonstrated that either low affinity or monovalent receptor binding re-directs their transcellular trafficking away from lysosomal degradation and toward improved exocytosis on the abluminal side of the BBB.
View Article and Find Full Text PDFDelivery of biologic drugs across the blood-brain barrier is becoming a reality. However, the solutions often involve the assembly of complex multi-specific antibody molecules. Here we utilize a simple 12 amino-acid peptide originating from the melanotransferrin (MTf) protein that has shown improved brain delivery properties.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is a formidable obstacle for brain delivery of therapeutic antibodies. However, antibodies against the transferrin receptor (TfR), enriched in brain endothelial cells, have been developed as delivery carriers of therapeutic cargoes into the brain via a receptor-mediated transcytosis pathway. In vitro and in vivo studies demonstrated that either a low-affinity or monovalent binding of these antibodies to the TfR improves their release on the abluminal side of the BBB and target engagement in brain parenchyma.
View Article and Find Full Text PDFWith less than 50% of patients responding to the current standard of care and poor efficacy and selectivity of current treatments, neuropathic pain continues to be an area of considerable unmet medical need. Biological therapeutics such as monoclonal antibodies (mAbs) provide better intrinsic selectivity; however, delivery to the central nervous system (CNS) remains a challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well described in inflammation-induced pain, and early-phase clinical trials evaluating its antagonism have exemplified its importance as a peripheral pain target.
View Article and Find Full Text PDFNeuropathic pain is a major unmet medical need, with only 30% to 35% of patients responding to the current standard of care. The discovery and development of novel therapeutics to address this unmet need have been hampered by poor target engagement, the selectivity of novel molecules, and limited access to the relevant compartments. Biological therapeutics, either monoclonal antibodies (mAbs) or peptides, offer a solution to the challenge of specificity as the intrinsic selectivity of these kinds of molecules is significantly higher than traditional medicinal chemistry-derived approaches.
View Article and Find Full Text PDFNeprilysin (NEP) is an endogenous protease that degrades a wide range of peptides including amyloid beta (Aβ), the main pathological component of Alzheimer's disease (AD). We have engineered NEP as a potential therapeutic for AD but found in pre-clinical safety testing that this variant increased prothrombin time (PT) and activated partial thromboplastin time (APTT). The objective of the current study was to investigate the effect of wild type NEP and the engineered variant on coagulation and define the mechanism by which this effect is mediated.
View Article and Find Full Text PDFBackground/aim: An in vitro chemoresponse assay may aid effective therapy selection in epithelial ovarian cancer (EOC). This study explores changes in chemoresponse between paired primary and recurrent EOC tumors.
Patients And Methods: RESULTS from metachronous tumors were examined in 242 patients.
Neprilysin is a transmembrane zinc metallopeptidase that degrades a wide range of peptide substrates. It has received attention as a potential therapy for Alzheimer's disease due to its ability to degrade the peptide amyloid beta. However, its broad range of peptide substrates has the potential to limit its therapeutic use due to degradation of additional peptides substrates that tightly regulate many physiological processes.
View Article and Find Full Text PDFBackground: The feasibility of robotic staging for high-risk endometrial cancer is unclear.
Methods: Retrospective review of papillary serous and clear cell endometrial cancer open staging (OS) and robotic staging (RS) cases (2009-2011) by two gynaecological oncologists.
Results: There were 15 OS and 17 RS cases (no conversions).
Background: While most gynecologic cancers respond to first-line cytotoxic chemotherapy, treatment of recurrent disease is frequently associated with acquired drug resistance. In order to find an in vitro surrogate of this clinical phenomenon, a tumor chemoresponse assay was studied.
Methods/materials: Patients who had tissue submitted for repeated chemoresponse testing were identified through a retrospective search.
Alzheimer's disease is characterized by the accumulation of amyloid deposits in the brain and the progressive loss of cognitive functions. Although the precise role of amyloid-β in disease progression remains somewhat controversial, many efforts to halt or reverse disease progression have focussed on reducing its synthesis or enhancing its removal. It is believed that brain and peripheral soluble amyloid-β are in equilibrium and it has previously been hypothesized that a reduction in peripheral amyloid-β can lower brain amyloid-β, thereby reducing formation of plaques predominantly composed of insoluble amyloid-β; the so-called peripheral sink hypothesis.
View Article and Find Full Text PDFAntibodies have become the fastest growing class of biological therapeutics, in part due to their exquisite specificity and ability to modulate protein-protein interactions with a high biological potency. The relatively large size and bivalency of antibodies, however, limits their use as therapeutics in certain circumstances. Antibody fragments, such as single-chain variable fragments and antigen binding-fragments, have emerged as viable alternatives, but without further modifications these monovalent formats have reduced terminal serum half-lives because of their small size and lack of an Fc domain, which is required for FcRn-mediated recycling.
View Article and Find Full Text PDFStructural backbones of iron-scavenging siderophore molecules include polyamines 1,3-diaminopropane and 1,5-diaminopentane (cadaverine). For the cadaverine-based desferroxiamine E siderophore in Streptomyces coelicolor, the corresponding biosynthetic gene cluster contains an ORF encoded by desA that was suspected of producing the cadaverine (decarboxylated lysine) backbone. However, desA encodes an l-2,4-diaminobutyrate decarboxylase (DABA DC) homologue and not any known form of lysine decarboxylase (LDC).
View Article and Find Full Text PDFBackground: This study was performed to determine if a chemotherapy-induced apoptosis assay (MiCK) could predict the best therapy for patients with ovarian cancer.
Methods: A prospective, multi-institutional and blinded trial of the assay was conducted in 104 evaluable ovarian cancer patients treated with chemotherapy. The MiCK assay was performed prior to therapy, but treating physicians were not told of the results and selected treatment only on clinical criteria.
A drug-induced apoptosis assay, termed the microculture-kinetic (MiCK) assay, has been developed. Blinded clinical trials have shown higher response rates and longer survival in groups of patients with acute myelocytic leukemia and epithelial ovarian cancer who have been treated with drugs that show high apoptosis in the MiCK assay. Unblinded clinical trials in multiple tumor types have shown that the assay will be used frequently by clinicians to determine treatment, and when used, results in higher response rates, longer times to relapse, and longer survivals.
View Article and Find Full Text PDFWe have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of topoisomerase enzymes that is also capable of monitoring the activity of other enzymes that alter the topology of DNA. The assay utilises intermolecular triplex formation to resolve supercoiled and relaxed forms of DNA, the principle being the greater efficiency of a negatively supercoiled plasmid to form an intermolecular triplex with an immobilised oligonucleotide than the relaxed form. The assay provides a number of advantages over the standard gel-based methods, including greater speed of analysis, reduced sample handling, better quantitation and improved reliability and accuracy of output data.
View Article and Find Full Text PDFA high-field electron paramagnetic resonance (HFEPR) study of oxalate decarboxylase (OxdC) is reported. OxdC breaks down oxalate to carbon dioxide and formate and possesses two distinct manganese(II) binding sites, referred to as site-1 and -2. The Mn(II) zero-field interaction was used to probe the electronic state of the metal ion and to examine chemical/mechanistic roles of each of the Mn(II) centers.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2008
Thirty-one aminocoumarin antibiotics derived from mutasynthesis experiments were investigated for their biological activities. Their inhibitory activities toward Escherichia coli DNA gyrase were determined in two different in vitro assays: an ATPase assay and a DNA supercoiling assay. The assays gave a similar rank order of the activities of the compounds tested, although the absolute 50% inhibitory concentrations (IC(50)s) obtained in each assay were different.
View Article and Find Full Text PDFOxalate decarboxylases and oxalate oxidases are members of the cupin superfamily of proteins that have many common features: a manganese ion with a common ligand set, the substrate oxalate, and dioxygen (as either a unique cofactor or a substrate). We have hypothesized that these enzymes share common catalytic steps that diverge when a carboxylate radical intermediate becomes protonated. The Bacillus subtilis decarboxylase has two manganese binding sites, and we proposed that Glu162 on a flexible lid is the site 1 general acid.
View Article and Find Full Text PDFOxalate decarboxylase converts oxalate to formate and carbon dioxide and uses dioxygen as a cofactor despite the reaction involving no net redox change. We have successfully used Fourier transform infrared spectroscopy to monitor in real time both substrate consumption and product formation for the first time. The assignment of the peaks was confirmed using [(13)C]oxalate as the substrate.
View Article and Find Full Text PDF