Here, we reconsider the status quo in testing mechanical sensitivity with von Frey's hairs. The aim is to improve paw withdrawal estimates by integrating current psychometric theory, and to maximise the clinical relevance and statistical power of mechanosensory models. A wealth of research into human tactile stimulus perception may be extended to the quantification of laboratory animal behaviour.
View Article and Find Full Text PDFNitric oxide (NO) plays an important role in pathophysiology of the nervous system. Copper/zinc superoxide dismutase (SOD1) reacts with superoxide, which is also a substrate for NO, to provide antioxidative protection. NO production is greatly altered following nerve injury, therefore we hypothesised that SOD1 and NO may be involved in modulating axotomy responses in dorsal root ganglion (DRG)-spinal network.
View Article and Find Full Text PDFDorsal root ganglia (DRG) respond to peripheral nerve injury by up-regulating nitric oxide (NO) production by neurons and glia in addition to local fibroblasts, endothelium and macrophages. We hypothesise that NO produced from these cells has specific roles. We have shown that when neuronal NO synthase (nNOS) is blocked in axotomised DRG, neurons undergo degenerative changes (Thippeswamy et al.
View Article and Find Full Text PDFTBX1 is a principal candidate gene for DiGeorge syndrome, a developmental anomaly that affects the heart, thymus, parathyroid, face, and teeth. A mouse model carrying a deletion in a functional region of the Tbx1 gene has been extensively used to study anomalies related to this syndrome. We have used the Tbx1 null mouse to understand the tooth phenotype reported in patients afflicted by DiGeorge syndrome.
View Article and Find Full Text PDF