Publications by authors named "Matthew Blain-Hartung"

The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids.

View Article and Find Full Text PDF

Orthogonal translation is an efficient tool that provides many valuable spectral probes capable of covering different parts of the electromagnetic spectrum and thus enabling parameterization of various structural and dynamic phenomena in proteins. In this context, nitrile-containing tryptophan analogs are very useful probes to study local electrostatics and hydrogen bonding in both rigid and dynamic environments. Here, we report a semi-rational approach to engineer a tyrosyl-tRNA synthetase (TyrRS) variant of Methanocaldococcus jannaschii capable of incorporating 5-cyanotryptophan (5CNW) via orthogonal translation.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are spectrally diverse photosensors from cyanobacteria distantly related to phytochromes that exploit photoisomerization of linear tetrapyrrole (bilin) chromophores to regulate associated signaling output domains. Unlike phytochromes, a single CBCR domain is sufficient for photoperception. CBCR domains that regulate the production or degradation of cyclic nucleotide second messengers are becoming increasingly well characterized.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are photoreceptor proteins that photoconvert between two parent states and thereby regulate various biological processes. An intriguing property is their variable ultraviolet-visible (UV-vis) absorption that covers the entire spectral range from the far-red to the near-UV region and thus makes CBCRs promising candidates for optogenetic applications. Here, we have studied Slr1393, a CBCR that photoswitches between red- and green-absorbing states (Pr and Pg, respectively).

View Article and Find Full Text PDF

Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species.

View Article and Find Full Text PDF

Phytochromes and cyanobacteriochromes (CBCRs) use double-bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit photocycles that are much more diverse than those of phytochromes and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multidomain extension at its N-terminus.

View Article and Find Full Text PDF