By enabling the dissemination and storage of information, paper has been central to human culture for more than a millennium. Its use is, however, associated with a common injury: the paper cut. Surprisingly, the physics underpinning a flexible sheet of paper slicing into soft tissues remains unresolved.
View Article and Find Full Text PDFFluid flow networks are ubiquitous and can be found in a broad range of contexts, from human-made systems such as water supply networks to living systems like animal and plant vasculature. In many cases, the elements forming these networks exhibit a highly non-linear pressure-flow relationship. Although we understand how these elements work individually, their collective behavior remains poorly understood.
View Article and Find Full Text PDFControlling fluid flow from an unsteady source is a challenging problem that is relevant in both living and man-made systems. Animals have evolved various autoregulatory mechanisms to maintain homeostasis in vital organs. This keeps the influx of nutrients essentially constant and independent of the perfusion pressure.
View Article and Find Full Text PDFHypothesis: Interfacial rheology provides insight into the mechanical properties of adsorption layers on liquid-liquid interfaces, which mediates the stability of emulsion droplets. The use of capsule compression at the scale of an emulsion droplet to probe the interfacial rheology may open up the possibility of testing the interfacial rheological properties of droplets with complex histories and extremely small volumes found in many applications.
Experiments: The time dependent interfacial rheological behavior of β-lactoglobulin adsorption layers on an oil/water interface in the native and crosslinked state was extracted using small oscillatory indentation with atomic force microscopy (AFM).
ACS Appl Mater Interfaces
October 2020
The time-dependent behavior of surface-active adsorption layers at the oil/water interface can dictate emulsion behavior at both the micro- and macroscale. In addition, self-healing behavior of the adsorption layer may benefit emulsion stability subject to large deformation under processing or during final application. We explore the behavior of chitosan, a known hydrophilic emulsifier, which forms nanoparticle aggregates when the concentration of acetate buffer exceeds 0.
View Article and Find Full Text PDFHydrogels can be formed in a number of different geometries depending upon desired function. However, due to the lack of appropriate models required to interpret experimental data, it remains unclear whether hydrogel microparticles have the same poroelastic properties as hydrogel films made with the same components. We perform numerical simulations to determine the universal force relaxation of a poroelastic hydrogel particle undergoing constant compression by a spherical probe, allowing analysis of experimental measurements of hydrogel particle material properties for the first time.
View Article and Find Full Text PDFHypothesis: The role of interfacial coatings in gas transport dynamics in foam coarsening is often difficult to quantify. The complexity of foam coarsening measurements or gas transport measurements between bubbles requires assumptions about the liquid thin film thickness profile in order to explore the effects of interfacial coatings on gas transport. It should be possible to independently quantify the effects from changes in film thickness and interfacial permeability by using both atomic force microscopy and optical microscopy to obtain time snapshots of this dynamic process.
View Article and Find Full Text PDFThe mechanical properties of polyacrylamide (PA) and polydimethylsiloxane (PDMS) microparticle populations have been measured using microaspiration, a recently developed experimental technique. Microaspiration is an augmented version of micropipette aspiration, in which optical microscopy data are obtained as individual soft particles pass through the tip of a micropipette. During microaspiration, the ion current passing through the pipette tip is also measured, and the synchronised optical and current data streams are used to study and quantify mechanical properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Metal-phenolic networks (MPNs) are an emerging class of functional metal-organic materials with a high degree of modularity in terms of the choice of metal ion, phenolic ligand, and assembly method. Although various applications, including drug delivery, imaging, and catalysis, have been studied with MPNs, in the form of films and capsules, the influence of metals and organic building blocks on their mechanical properties is poorly understood. Herein, we demonstrate that the mechanical properties of MPNs can be tuned through choice of the metal ion and/or phenolic ligand.
View Article and Find Full Text PDFAn experimental protocol has been developed for synthesizing stable core-shell microcapsules using a biopolymer, chitosan, lacking cross-linkable thiol functional groups. In the first step, thiol moieties were introduced into the backbone of chitosan using dl-N-acetylhomocysteine thiolactone (AHT). In the second step, AHT-modified chitosan shelled microcapsules, encapsulating an oil core, were successfully prepared using high intensity 20 kHz ultrasound.
View Article and Find Full Text PDF