Publications by authors named "Matthew Bettini"

Article Synopsis
  • Self-reactive T cells in autoimmune diseases can persist and function well without showing typical exhaustion symptoms, despite being exposed to the same antigens over time.
  • Research showed that these autoimmune CD4 T cells maintain TCF1 expression even in the absence of infectious signals, which is crucial for their continued function.
  • The study also indicated that the Tcf7 gene undergoes specific epigenetic changes during the early stages of autoimmune T cell differentiation, helping to explain why these cells can survive and remain active for longer periods.
View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease of preterm infants that is associated with life-long morbidities. Inflammatory insults contribute to BPD pathogenesis. Although the proinflammatory cytokine, IL-17a, plays a role in various neonatal inflammatory disorders, its role in BPD pathogenesis is unclear.

View Article and Find Full Text PDF

As the prevalence of allergy and autoimmune disease in industrialized societies continues to rise, improving our understanding of the mechanistic roles behind microbiota-immune homeostasis has become critical for informing therapeutic interventions in cases of dysbiosis. Of particular importance, are alterations to intestinal microbiota occurring within the critical neonatal window, during which the immune system is highly vulnerable to environmental exposures. This review will highlight recent literature concerning mechanisms of early-life microbiota-immune homeostasis as well as discuss the potential for therapeutics in restoring dysbiosis in early life.

View Article and Find Full Text PDF

Conventional immunosuppressive functions of CD4Foxp3 regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury.

View Article and Find Full Text PDF

Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury.

View Article and Find Full Text PDF

Foxp3+ regulatory T cells (Tregs) are capable suppressors of aberrant self-reactivity. However, TCR affinity and specificities that support Treg function, and how these compare to autoimmune T cells remain unresolved. In this study, we used antigen agnostic and epitope-focused analyses to compare TCR repertoires of regulatory and effector T cells that spontaneously infiltrate pancreatic islets of non-obese diabetic mice.

View Article and Find Full Text PDF

Although conventional knockout and transgenic mouse models have significantly advanced our understanding of Receptor Activator of NF-κB Ligand (RANKL) signaling in intra-thymic crosstalk that establishes self-tolerance and later stages of lymphopoiesis, the unique advantages of conditional mouse transgenesis have yet to be explored. A main advantage of conditional transgenesis is the ability to express a transgene in a spatiotemporal restricted manner, enabling the induction (or de-induction) of transgene expression during predetermined stages of embryogenesis or during defined postnatal developmental or physiological states, such as puberty, adulthood, and pregnancy. Here, we describe the K5: RANKL bigenic mouse, in which transgene derived RANKL expression is induced by doxycycline and targeted to cytokeratin 5 positive medullary thymic epithelial cells (mTECs).

View Article and Find Full Text PDF

Type-1 Diabetes (T1D) is a complex polygenic autoimmune disorder involving T-cell driven beta-cell destruction leading to hyperglycemia. There is no cure for T1D and patients rely on exogenous insulin administration for disease management. T1D is associated with specific disease susceptible alleles.

View Article and Find Full Text PDF

Thymic presentation of self-antigens is critical for establishing a functional yet self-tolerant T-cell population. Hybrid peptides formed through transpeptidation within pancreatic β-cell lysosomes have been proposed as a new class of autoantigens in type 1 diabetes (T1D). While the production of hybrid peptides in the thymus has not been explored, due to the nature of their generation, it is thought to be highly unlikely.

View Article and Find Full Text PDF

The contribution of low-affinity T cells to autoimmunity in the context of polyclonal T-cell responses is understudied due to the limitations in their capture by tetrameric reagents and low level of activation in response to antigenic stimulation. As a result, low-affinity T cells are often disregarded as nonantigen-specific cells irrelevant to the immune response. Our study aimed to assess how the level of self-antigen reactivity shapes T-cell lineage and effector responses in the context of spontaneous tissue-specific autoimmunity observed in NOD mice.

View Article and Find Full Text PDF

Accumulating evidence supports a critical role for posttranslationally modified (PTM) islet neoantigens in type 1 diabetes. However, our understanding regarding thymic development and peripheral activation of PTM autoantigen-reactive T cells is still limited. Using HLA-DR4 humanized mice, we observed that deamidation of GAD65115-127 generates a more immunogenic epitope that recruits T cells with promiscuous recognition of both the deamidated and native epitopes and reduced frequency of regulatory T cells.

View Article and Find Full Text PDF

Critical insights into the etiology of type 1 diabetes (T1D) came from genome-wide association studies that unequivocally connected genetic susceptibility to immune cell function. At the top of the susceptibility are genes involved in regulatory T-cell (Treg) function and development. The advances in epigenetic and transcriptional analyses have provided increasing evidence for Treg dysfunction in T1D.

View Article and Find Full Text PDF

Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic pathways are crucial for T cell development and function, but many aspects remain unexplored.
  • Deleting the Mitochondrial Pyruvate Carrier 1 (Mpc1) in the blood cell system leads to fewer peripheral αβ T cells and causes issues at key development stages in the thymus.
  • This study highlights that pyruvate oxidation is vital for effective αβ T cell development, as its lack leads to a reduction in T cell numbers and increased susceptibility to autoimmune diseases in mice.
View Article and Find Full Text PDF

Type 1 diabetes is an autoimmune-mediated disease that culminates in the targeted destruction of insulin-producing β-cells. CD4 responses in NOD mice are dominated by insulin epitope B:9-23 (InsB) specificity, and mutation of the key T-cell receptor (TCR) contact residue within the epitope prevents diabetes development. However, it is not clear how insulin self-antigen controls the selection of autoimmune and regulatory T cells (Tregs).

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of infants that is characterized by interrupted lung development. Postnatal sepsis causes BPD, yet the contributory mechanisms are unclear. To address this gap, studies have used lipopolysaccharide (LPS) during the alveolar phase of lung development.

View Article and Find Full Text PDF

The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CXCR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself.

View Article and Find Full Text PDF

T cell receptor (TCR) affinity is a critical factor of Treg lineage commitment, but whether self-reactivity is a determining factor in peripheral Treg function remains unknown. Here, we report that a high degree of self-reactivity is crucial for tissue-specific Treg function in autoimmunity. Based on high expression of CD5, we identified a subset of self-reactive Tregs expressing elevated levels of T-bet, GITR, CTLA-4, and ICOS, which imparted significant protection from autoimmune diabetes.

View Article and Find Full Text PDF

The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) use a distinct TCR repertoire and are more self-reactive compared with conventional T cells. However, the extent to which TCR affinity regulates the function of self-reactive Tregs is largely unknown. In this study, we used a two-TCR model to assess the role of TCR affinity in Treg function during autoimmunity.

View Article and Find Full Text PDF

Although, several methods for sequencing of paired T cell receptor (TCR) alpha and beta chains from single T cells have been developed, none so far have been conducive to downstream in vivo functional analysis of TCR heterodimers. We have developed an improved protocol based on a two-step multiplex-nested PCR, which results in a PCR product that spans entire variable regions of a human TCR alpha and beta chains. By identifying unique restriction sites and incorporating them into the PCR primers, we have made the PCR product compatible with direct sub-cloning into the template retroviral vector.

View Article and Find Full Text PDF

Type 1 diabetes is a T cell-mediated autoimmune disease that is characterized by Ag-specific targeting and destruction of insulin-producing β cells. Although multiple studies have characterized the pathogenic potential of β cell-specific T cells, we have limited mechanistic insight into self-reactive autoimmune T cell development and their escape from negative selection in the thymus. In this study, we demonstrate that ectopic expression of insulin epitope B:9-23 (InsB) by thymic APCs is insufficient to induce deletion of high- or low-affinity InsB-reactive CD4 T cells; however, we observe an increase in the proportion and number of thymic and peripheral Foxp3 regulatory T cells.

View Article and Find Full Text PDF

For the αβ or γδTCR chains to integrate extracellular stimuli into the appropriate intracellular cellular response, they must use the 10 ITAMs found within the CD3 subunits (CD3γε, CD3δε, and ζζ) of the TCR signaling complex. However, it remains unclear whether each specific ITAM sequence of the individual subunit (γεδζ) is required for thymocyte development or whether any particular CD3 ITAM motif is sufficient. In this article, we show that mice utilizing a single ITAM sequence (γ, ε, δ, ζa, ζb, or ζc) at each of the 10 ITAM locations exhibit a substantial reduction in thymic cellularity and limited CD4CD8 (double-negative) to CD4CD8 (double-positive) maturation because of low TCR expression and signaling.

View Article and Find Full Text PDF

Single-cell paired TCR identification is a powerful tool, but has been limited in its previous incompatibility with further functional analysis. The current protocol describes a method to clone and functionally evaluate in vivo TCRs derived from single antigen-responsive human T cells and monoclonal T cell lines. We have improved upon current PCR-based TCR sequencing protocols by developing primers that allow amplification of human TCRα and TCRβ variable regions, while incorporating specific restriction cut sites for direct subcloning into the template retroviral vector.

View Article and Find Full Text PDF

T cell receptor (TCR) signaling is essential in the development and differentiation of T cells in the thymus and periphery, respectively. The vast array of TCRs proves studying a specific antigenic response difficult. Therefore, TCR transgenic mice were made to study positive and negative selection in the thymus as well as peripheral T cell activation, proliferation and tolerance.

View Article and Find Full Text PDF