Publications by authors named "Matthew Bartnof"

As the features of microprocessors are miniaturized, low-dielectric-constant (low-k) materials are necessary to limit electronic crosstalk, charge build-up, and signal propagation delay. However, all known low-k dielectrics exhibit low thermal conductivities, which complicate heat dissipation in high-power-density chips. Two-dimensional (2D) covalent organic frameworks (COFs) combine immense permanent porosities, which lead to low dielectric permittivities, and periodic layered structures, which grant relatively high thermal conductivities.

View Article and Find Full Text PDF

The thermal conductivity of fullerene-based superatomic crystals (SACs) is investigated using molecular dynamics simulations. The temperature-dependent predictions agree with the trends of previous measurements. The thermal conductivity behavior emerges as a result of the C molecule rotational dynamics and orientation, which are quantified using the root mean square displacements of the carbon atoms and the relative orientations of the Cs.

View Article and Find Full Text PDF

Structural phase transitions run in families of crystalline solids. Perovskites, for example, feature a remarkable number of structural transformations that produce a wealth of exotic behaviors, including ferroelectricity, magnetoresistance, metal-insulator transitions and superconductivity. In superatomic crystals and other such materials assembled from programmable building blocks, phase transitions offer pathways to new properties that are both tunable and switchable.

View Article and Find Full Text PDF