Recent literature emphasizes the importance of comfort in the design of exosuits and other assistive devices that physically augment humans; however, there is little quantitative data to aid designers in determining what level of force makes users uncomfortable. To help close this knowledge gap, we characterized human comfort limits when applying forces to the shoulders, thigh and shank. Our objectives were: (i) characterize the comfort limits for multiple healthy participants, (ii) characterize comfort limits across days, and (iii) determine if comfort limits change when forces are applied at higher vs.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2019
Here, we present the design of a novel unpowered ankle exoskeleton that is low profile, lightweight, quiet, and low cost to manufacture, intrinsically adapts to different walking speeds, and does not restrict non-sagittal joint motion; while still providing assistive ankle torque that can reduce demands on the biological calf musculature. This paper is an extension of the previously-successful ankle exoskeleton concept by Collins, Wiggin, and Sawicki. We created a device that blends the torque assistance of the prior exoskeleton with the form-factor benefits of clothing.
View Article and Find Full Text PDFBackground: Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power.
Methods: Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking.
Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency.
View Article and Find Full Text PDF