The mating system of self-compatible plants may fluctuate between years in response to ecological factors that cause variation in the deposition of self pollen vs. outcross pollen on stigmas. Such temporal variation may have significant ecological and evolutionary consequences, but it has rarely been studied, and the mechanisms that mediate temporal variation have almost never been investigated.
View Article and Find Full Text PDFHermaphroditism allows considerable scope for contributing genes to subsequent generations through various mixtures of selfed and outcrossed offspring. The fitness consequences of different family compositions determine the evolutionarily stable mating strategy and depend on the interplay of genetic features, the nature of mating, and factors that govern offspring development. This theoretical article considers the relative contributions of these influences and their interacting effects on mating-system evolution, given a fixed genetic load within a population.
View Article and Find Full Text PDFClonal growth in plants can increase pollen and ovule production per genet. However, paternal and maternal reproductive success may not increase because within-clone pollination (geitonogamy) can reduce pollen export to adjacent clones (pollen discounting) and pollen import to the central ramets (pollen limitation). The relationship between clone size and mating success was investigated using clones of Malus × domestica at four orchards (blocks of 1-5 rows of trees).
View Article and Find Full Text PDFProtandry, a form of temporal separation of gender within hermaphroditic flowers, may reduce the magnitude of pollen lost to selfing (pollen discounting) and also serve to enhance pollen export and outcross siring success. Because pollen discounting is strongest when selfing occurs between flowers on the same plant, the advantage of protandry may be greatest in plants with large floral displays. We tested this hypothesis with enclosed, artificial populations of Chamerion angustifolium (Onagraceae) by experimentally manipulating protandry (producing uniformly adichogamous or mixed protandrous and adichogamous populations) and inflorescence size (two-, six-, or 10-flowered inflorescences) and measuring pollinator visitation, seed set, female outcrossing rate, and outcross siring success.
View Article and Find Full Text PDF