J Colloid Interface Sci
December 2018
Hypothesis: Vapor adsorption experiments are widely used to assess pore size distributions, but the large hysteresis sometimes observed between sorption and desorption isotherms remains difficult to interpret. Such hysteresis is influenced pore network connectivity, which has previously been modeled by percolation on infinite lattices. Our hypothesis is that percolation occurs instead through finite networks of micropores connecting accessible macropores, always exposed to the outside environment.
View Article and Find Full Text PDFProgrammable stiff sheets with a single low-energy folding motion have been sought in fields ranging from the ancient art of origami to modern meta-materials research. Despite such attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-based zero-energy patterns, in which crease folding requires no sheet bending, and random patterns with high-energy folding, in which the sheet bends as much as creases fold. We present a physical approach that allows systematic exploration of the entire space of crease patterns as a function of the folding energy.
View Article and Find Full Text PDFWe examine the 'transmissibility' of a simulated two-dimensional pack of frictionless disks formed by confining dilute disks in a shrinking, periodic box to the point of mechanical stability. Two opposite boundaries are then removed, thus allowing a set of free motions. Small free displacements on one boundary then induce proportional displacements on the opposite boundary.
View Article and Find Full Text PDF