Importance: Artificial intelligence (AI) has gained considerable attention in health care, yet concerns have been raised around appropriate methods and fairness. Current AI reporting guidelines do not provide a means of quantifying overall quality of AI research, limiting their ability to compare models addressing the same clinical question.
Objective: To develop a tool (APPRAISE-AI) to evaluate the methodological and reporting quality of AI prediction models for clinical decision support.
Clinical artificial intelligence (AI)/machine learning (ML) is anticipated to offer new abilities in clinical decision support, diagnostic reasoning, precision medicine, clinical operational support, and clinical research, but careful concern is needed to ensure these technologies work effectively in the clinic. Here, we detail the clinical ML/AI design process, identifying several key questions and detailing several common forms of issues that arise with ML tools, as motivated by real-world examples, such that clinicians and researchers can better anticipate and correct for such issues in their own use of ML/AI techniques.
View Article and Find Full Text PDFArtificial intelligence (AI) systems have increasingly achieved expert-level performance in medical imaging applications. However, there is growing concern that such AI systems may reflect and amplify human bias, and reduce the quality of their performance in historically under-served populations such as female patients, Black patients, or patients of low socioeconomic status. Such biases are especially troubling in the context of underdiagnosis, whereby the AI algorithm would inaccurately label an individual with a disease as healthy, potentially delaying access to care.
View Article and Find Full Text PDFMachine learning for health must be reproducible to ensure reliable clinical use. We evaluated 511 scientific papers across several machine learning subfields and found that machine learning for health compared poorly to other areas regarding reproducibility metrics, such as dataset and code accessibility. We propose recommendations to address this problem.
View Article and Find Full Text PDFModeling the relationship between chemical structure and molecular activity is a key goal in drug development. Many benchmark tasks have been proposed for molecular property prediction, but these tasks are generally aimed at specific, isolated biomedical properties. In this work, we propose a new cross-modal small molecule retrieval task, designed to force a model to learn to associate the structure of a small molecule with the transcriptional change it induces.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
December 2021
Gene expression data can offer deep, physiological insights beyond the static coding of the genome alone. We believe that realizing this potential requires specialized, high-capacity machine learning methods capable of using underlying biological structure, but the development of such models is hampered by the lack of published benchmark tasks and well characterized baselines. In this work, we establish such benchmarks and baselines by profiling many classifiers against biologically motivated tasks on two curated views of a large, public gene expression dataset (the LINCS corpus) and one privately produced dataset.
View Article and Find Full Text PDFPositioning of microtubule-organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early Caenorhabditis elegans embryo assume remarkable changes in the origin and polarity of forces acting on the MTOCs. These changes must occur over a few minutes, between initial centration and rotation of the pronuclear complex and entry into mitosis, and the models do not replicate in vivo timing of centration and rotation.
View Article and Find Full Text PDFA significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis.
View Article and Find Full Text PDF