Multiplexed detection of biomarkers in real-time is crucial for sensitive and accurate diagnosis at the point of use. This scenario poses tremendous challenges for detection and identification of signals of varying shape and quality at the edge of the signal-to-noise limit. Here, we demonstrate a robust target identification scheme that utilizes a Deep Neural Network (DNN) for multiplex detection of single particles and molecular biomarkers.
View Article and Find Full Text PDFMany sensors operate by detecting and identifying individual events in a time-dependent signal which is challenging if signals are weak and background noise is present. We introduce a powerful, fast, and robust signal analysis technique based on a massively parallel continuous wavelet transform (CWT) algorithm. The superiority of this approach is demonstrated with fluorescence signals from a chip-based, optofluidic single particle sensor.
View Article and Find Full Text PDFUltrasensitive, versatile sensors for molecular biomarkers are a critical component of disease diagnostics and personalized medicine as the COVID-19 pandemic has revealed in dramatic fashion. Integrated electrical nanopore sensors can fill this need via label-free, direct detection of individual biomolecules, but a fully functional device for clinical sample analysis has yet to be developed. Here, we report amplification-free detection of SARS-CoV-2 RNAs with single molecule sensitivity from clinical nasopharyngeal swab samples on an electro-optofluidic chip.
View Article and Find Full Text PDFThe urgency for the development of a sensitive, specific, and rapid point-of-care diagnostic test has deepened during the ongoing COVID-19 pandemic. Here, we introduce an ultrasensitive chip-based antigen test with single protein biomarker sensitivity for the differentiated detection of both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A antigens in nasopharyngeal swab samples at diagnostically relevant concentrations. The single-antigen assay is enabled by synthesizing a brightly fluorescent reporter probe, which is incorporated into a bead-based solid-phase extraction assay centered on an antibody sandwich protocol for the capture of target antigens.
View Article and Find Full Text PDFIEEE J Sel Top Quantum Electron
September 2020
Infectious disease outbreaks such as Ebola and other Viral Hemorrhagic Fevers (VHF) require low-complexity, specific, and differentiated diagnostics as illustrated by the recent outbreak in the Democratic Republic of Congo. Here, we describe amplification-free spectrally multiplex detection of four different VHF total RNA samples using multi-spot excitation on a multimode interference waveguide platform along with combinatorial fluorescence labeling of target nucleic acids. In these experiments, we observed an average of 8-fold greater fluorescence signal amplitudes for the Ebola total RNA sample compared to three other total RNA samples: Lake Victoria Marburg Virus, Ravn Marburg Virus, and Crimean-Congo Hemorrhagic Fever.
View Article and Find Full Text PDFIEEE Photonics Technol Lett
October 2018
Multimode interference (MMI) waveguides can be used to create wavelength-dependent spot patterns which enables simultaneous analyte detection on a single optofluidic chip, useful for disease diagnostics. The fidelity of such multi-spot patterns is important for high sensitivity and accurate target identification. Buried rib structures have been incorporated into these SiO-based waveguides to improve environmental stability.
View Article and Find Full Text PDFThe recent massive Zika virus (ZIKV) outbreak illustrates the need for rapid and specific diagnostic techniques. Detecting ZIKV in biological samples poses unique problems: antibody detection of ZIKV is insufficient due to cross-reactivity of Zika antibodies with other flaviviruses, and nucleic acid and protein biomarkers for ZIKV are detectable at different stages of infection. Here, we describe a new optofluidic approach for the parallel detection of different molecular biomarkers using multimode interference (MMI) waveguides.
View Article and Find Full Text PDFMultimode interference (MMI) waveguides can be used for multiplexing and de-multiplexing optical signals. High fidelity, wavelength dependent multi-spot patterns from MMI waveguides are useful for sensitive and simultaneous identification of multiple targets in multiplexed fluorescence optofluidic biosensors. Through experiments and simulation, this paper explores design parameters for an MMI rib anti-resonant reflecting optical waveguide (ARROW) in order to produce high fidelity spot patterns at the liquid core biomarker excitation region.
View Article and Find Full Text PDFAntiresonant reflecting optical waveguide power splitters, designed for use around the 635-nm wavelength, are characterized for multiple split angles ranging from 0.5 deg to 9 deg. Theoretical expectations and simulations predict lowest transmission losses at this split junction for the lowest angles.
View Article and Find Full Text PDFIEEE J Sel Top Quantum Electron
March 2016
We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio () achieved by multi-spot excitation in liquid-core anti-resonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the increase after signal processing, and analyze its dependence on signal levels and spot number.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2015
Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context--the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip.
View Article and Find Full Text PDF