Publications by authors named "Matthew A Ralph"

Semantic cognition refers to our ability to use, manipulate and generalize knowledge that is acquired over the lifespan to support innumerable verbal and non-verbal behaviours. This Review summarizes key findings and issues arising from a decade of research into the neurocognitive and neurocomputational underpinnings of this ability, leading to a new framework that we term controlled semantic cognition (CSC). CSC offers solutions to long-standing queries in philosophy and cognitive science, and yields a convergent framework for understanding the neural and computational bases of healthy semantic cognition and its dysfunction in brain disorders.

View Article and Find Full Text PDF

We present a case-series comparison of patients with cross-modal semantic impairments consequent on either (a) bilateral anterior temporal lobe atrophy in semantic dementia (SD) or (b) left-hemisphere fronto-parietal and/or posterior temporal stroke in semantic aphasia (SA). Both groups were assessed on a new test battery designed to measure how performance is influenced by concept familiarity, typicality and specificity. In line with previous findings, performance in SD was strongly modulated by all of these factors, with better performance for more familiar items (regardless of typicality), for more typical items (regardless of familiarity) and for tasks that did not require very specific classification, consistent with the gradual degradation of conceptual knowledge in SD.

View Article and Find Full Text PDF

By developing and applying a method which combines fMRI and rTMS to explore semantic cognition, we identified both intrinsic (related to automatic changes in task/stimulus-related processing) and induced (i.e., associated with the effect of TMS) activation changes in the core, functionally-coupled network elements.

View Article and Find Full Text PDF

Conceptual knowledge about objects comprises a diverse set of multi-modal and generalisable information, which allows us to bring meaning to the stimuli in our environment. The formation of conceptual representations requires two key computational challenges: integrating information from different sensory modalities and abstracting statistical regularities across exemplars. Although these processes are thought to be facilitated by offline memory consolidation, investigations into how cross-modal concepts evolve offline, over time, rather than with continuous category exposure are still missing.

View Article and Find Full Text PDF

The core clinical feature of semantic dementia is a progressive yet selective degradation of conceptual knowledge. Understanding the cognitive and neuroanatomical basis for this deficit is a key challenge for both clinical and basic science. Some researchers attribute the deficit to damage to pan-modal conceptual representations that are independent of any particular sensory-motor modality and are represented in the ventrolateral anterior temporal lobes.

View Article and Find Full Text PDF

Objective: To assess the effectiveness of enhanced communication therapy in the first four months after stroke compared with an attention control (unstructured social contact).

Design: Externally randomised, pragmatic, parallel, superiority trial with blinded outcome assessment.

Setting: Twelve UK hospital and community stroke services.

View Article and Find Full Text PDF

Despite a vast literature examining semantic impairment in Alzheimer's disease (AD), consensus regarding the nature of the deficit remains elusive. We re-considered this issue in the context of a framework that assumes semantic cognition can break down in two ways: (1) core semantic representations can degrade or (2) cognitive control mechanisms can become impaired. We hypothesised and confirmed that the nature of semantic impairment in AD changes with disease severity.

View Article and Find Full Text PDF

Wernicke's aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and semantic aphasia) and (b) an ongoing debate about the underlying causes of comprehension impairment in WA. By directly comparing these three patient groups for the first time, we demonstrate that the comprehension impairment in Wernicke's aphasia is best accounted for by dual deficits in acoustic-phonological analysis (associated with pSTG) and semantic cognition (associated with pMTG and angular gyrus).

View Article and Find Full Text PDF

Wernicke's aphasia is a condition which results in severely disrupted language comprehension following a lesion to the left temporo-parietal region. A phonological analysis deficit has traditionally been held to be at the root of the comprehension impairment in Wernicke's aphasia, a view consistent with current functional neuroimaging which finds areas in the superior temporal cortex responsive to phonological stimuli. However behavioural evidence to support the link between a phonological analysis deficit and auditory comprehension has not been yet shown.

View Article and Find Full Text PDF

This investigation explored the hypothesis that patterns of acquired dyslexia may reflect, in part, plasticity-driven relearning that dynamically alters the division of labour (DOL) between the direct, orthography → phonology (O → P) pathway and the semantically mediated, orthography → semantics → phonology (O → S → P) pathway. Three simulations were conducted using a variant of the triangle model of reading. The model demonstrated core characteristics of normal reading behaviour in its undamaged state.

View Article and Find Full Text PDF

When relearning words, patients with semantic dementia (SD) exhibit a characteristic rigidity, including a failure to generalise names to untrained exemplars of trained concepts. This has been attributed to an over-reliance on the medial temporal region which captures information in sparse, non-overlapping and therefore rigid representations. The current study extends previous investigations of SD relearning by re-examining the additional contribution made by the degraded cortical semantic system.

View Article and Find Full Text PDF

For decades, category-specific semantic impairment - i.e., better comprehension of items from one semantic category than another - has been the driving force behind many claims about the organisation of conceptual knowledge in the brain.

View Article and Find Full Text PDF

Word frequency is a powerful predictor of language processing efficiency in healthy individuals and in computational models. Puzzlingly, frequency effects are often absent in stroke aphasia, challenging the assumption that word frequency influences the behavior of any computational system. To address this conundrum, we investigated divergent effects of frequency in two comprehension-impaired patient groups.

View Article and Find Full Text PDF

Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought and can occur as a result of mild disruption to semantic control processes, i.e.

View Article and Find Full Text PDF

More efficient processing of high frequency (HF) words is a ubiquitous finding in healthy individuals, yet frequency effects are often small or absent in stroke aphasia. We propose that some patients fail to show the expected frequency effect because processing of HF words places strong demands on semantic control and regulation processes, counteracting the usual effect. This may occur because HF words appear in a wide range of linguistic contexts, each associated with distinct semantic information.

View Article and Find Full Text PDF

Hub-and-spoke models of semantic representation suggest that coherent concepts are formed from the integration of multiple, modality-specific information sources with additional modality-invariant representations-most likely stored in the ventrolateral anterior temporal lobe (vATL). As well as providing the necessary computational mechanisms for the complexities of feature integration, these modality-invariant representations also license a key aspect of semantic memory-semantic-based generalization. Semantic dementia allows us to investigate this aspect of conceptual knowledge because (a) the patients have a selective and progressive semantic degradation and (b) this is associated with profound ventrolateral ATL atrophy.

View Article and Find Full Text PDF

Semantic cognition, which encompasses all conceptually based behavior, is dependent on the successful interaction of two key components: conceptual representations and regulatory control. Qualitatively distinct disorders of semantic knowledge follow damage to the different parts of this system. Previous studies have shown that patients with multimodal semantic impairment following CVA--a condition referred to as semantic aphasia (SA)--perform poorly on a range of conceptual tasks due to a failure of executive control following prefrontal and/or temporo-parietal infarction [Jefferies, E.

View Article and Find Full Text PDF

It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.

View Article and Find Full Text PDF

Although there is an emerging consensus that the anterior temporal lobes (ATLs) are involved in semantic memory, it is currently unclear which specific parts of this region are implicated in semantic representation. Answers to this question are difficult to glean from the existing literature for 3 reasons: 1) lesions of relevant patient groups tend to encompass the whole ATL region; 2) while local effects of repetitive transcranial magnetic stimulation (rTMS) are spatially more specific, only the lateral aspects of the ATL are available to stimulation; and 3) until recently, functional magnetic resonance imaging (fMRI) studies were hindered by technical limitations such as signal distortion and dropout due to magnetic inhomogeneities and also, in some cases, by methodological factors, including a restricted field of view and the choice of baseline contrast for subtraction analysis. By utilizing the same semantic task across semantic dementia, rTMS, and distortion-corrected fMRI in normal participants, we directly compared the results across the 3 methods for the first time.

View Article and Find Full Text PDF

Single shot echo-planar imaging (EPI) sequences are currently the most commonly used sequences for diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) as they allow relatively high signal to noise with rapid acquisition time. A major drawback of EPI is the substantial geometric distortion and signal loss that can occur due to magnetic field inhomogeneities close to air-tissue boundaries. If DWI-based tractography and fMRI are to be applied to these regions, then the distortions must be accurately corrected to achieve meaningful results.

View Article and Find Full Text PDF

The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words? Understanding words might be primarily left-lateralised, linked to other language areas, while semantic representation of pictures may be more bilateral. To elucidate this debate, we used offline, low-frequency, repetitive transcranial magnetic stimulation (rTMS) to disrupt neural processing temporarily in the left or right temporal poles.

View Article and Find Full Text PDF

Patients with semantic dementia show a specific pattern of impairment on both verbal and non-verbal "pre-semantic" tasks, e.g., reading aloud, past tense generation, spelling to dictation, lexical decision, object decision, colour decision and delayed picture copying.

View Article and Find Full Text PDF

Semantic processing can break down in qualitatively distinct ways in different neuropsychological populations. Previous studies have shown that patients with multimodal semantic impairments following stroke - referred to as semantic aphasia (SA) - show deficits on a range of conceptual tasks due to a failure of semantic control processes in the context of prefrontal and/or temporoparietal infarction. Although a deficit of semantic control would be expected to impair performance in all modalities in parallel, most previous research in this patient group has focussed primarily on tasks employing words.

View Article and Find Full Text PDF