Publications by authors named "Matthew A Perry"

Lufotrelvir was designed as a first in class 3CL protease inhibitor to treat COVID-19. Development of lufotrelvir was challenged by its relatively poor stability due to its propensity to epimerize and degrade. Key elements of process development included improvement of the supply routes to the indole and lactam fragments, a Claisen addition to homologate the lactam, and a subsequent phosphorylation reaction to prepare the prodrug as well as identification of a DMSO solvated form of lufotrelvir to enable long-term storage.

View Article and Find Full Text PDF

α-Branched heteroaryl amines are prevalent motifs in drugs and are typically prepared through C-N bond formation. In contrast, C-C bond-forming approaches to branched amines may dramatically expand available chemical space but are rarely pursued in parallel format due to a lack of established library protocols. Methods for the synthesis of α-branched heteroaryl amines aldimine addition have been evaluated for compatibility with parallel synthesis.

View Article and Find Full Text PDF

A deaminative reaction of Katritzky alkylpyridinium salts and sulfinimines has been developed to deliver enantiopure α-chiral amines. The success of this method relied on the discovery of a thermally promoted deamination via single-electron transfer of an anion-π complex of the alkylpyridinium cation with potassium carbonate. This method boasts excellent diastereoselectivity over the α-stereocenter as well as broad functional group and heterocycle tolerance.

View Article and Find Full Text PDF

The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic /-substituted arenes is described.

View Article and Find Full Text PDF

Historically accessed through two-electron, anionic chemistry, ketones, alcohols, and amines are of foundational importance to the practice of organic synthesis. After placing this work in proper historical context, this Article reports the development, full scope, and a mechanistic picture for a strikingly different way of forging such functional groups. Thus, carboxylic acids, once converted to redox-active esters (RAEs), can be utilized as formally nucleophilic coupling partners with other carboxylic derivatives (to produce ketones), imines (to produce benzylic amines), or aldehydes (to produce alcohols).

View Article and Find Full Text PDF

Reductive lithiation and cyclization of N-Boc α-amino nitriles are often highly stereoselective. The alkyllithium intermediates are formed with varying levels of selectivity, but the alkyllithium geometry does not play a major role in the overall stereoselectivity. The final configuration is determined in the cyclization reaction, where both retention and inversion pathways are observed.

View Article and Find Full Text PDF

Tertiary alkyllithium reagents are very useful intermediates in synthesis. Alkyllithium reagents with adjacent heteroatoms may be formed stereoselectively or may react stereoselectively, and have been used in the synthesis of alkaloids, C-glycosides and spirocycles. An overview of the generation, reactivity and stereochemistry of tertiary alkyllithium reagents will be presented, as well as examples of their use in organic synthesis.

View Article and Find Full Text PDF

A variety of spirocyclic heterocycles have been constructed by a double-alkylation and reductive cyclization approach utilizing α-heteroatom nitriles as trianion synthons. The method provides access to heteroatom-substituted spirocycles in a variety of ring sizes that are found in natural products and are important in pharmaceutical lead development and optimization.

View Article and Find Full Text PDF

A simple method for determining the absolute configuration of oxazolidinones, lactams, and their derivatives using kinetic resolution catalysts is described. The optically pure substrates were acylated using the (S)-HBTM and the (R)-HBTM catalyst, and the faster reaction was determined. An empirical mnemonic was developed for the assignment of the absolute configuration based on the fast-reacting catalyst.

View Article and Find Full Text PDF

Lepadiformine A, B, and C were synthesized in an enantiomerically pure form using a reductive cyclization strategy. N-Boc α-amino nitriles were deprotonated and alkylated with enantiomerically pure dibromides to afford the first ring. The products were manipulated to introduce phosphate leaving groups, and subsequent reductive lithiation followed by intramolecular alkylation formed the second ring with high stereoselectivity.

View Article and Find Full Text PDF

Reductive lithiation of N-Boc alpha-amino nitriles generated alpha-amino alkyllithium reagents with unexpected selectivity. The intermediate radical prefers to align with the nitrogen lone pair, and this interaction leads to an A(1,3)-strain effect that biases the conformation of the radical. In cyclohexane rings with alpha-substituents the net effect is an inversion of configuration on reductive lithiation.

View Article and Find Full Text PDF

Introduction: In vivo deastatination of (211)At-labeled biomolecules can severely limit their use in endoradiotherapy. Our studies have shown that the use of closo-decaborate(2-) moiety for (211)At-labeling of biomolecules provides high in vivo stability towards deastatination. However, data from those studies have also been suggestive that some astatinated closo-decaborate(2-) catabolites may be retained in tissues.

View Article and Find Full Text PDF

In vivo deastatination has been a major problem in the development of reagents for therapeutic applications of the alpha-particle emitting radionuclide (211)At. Our prior studies demonstrated that the use of a closo-decaborate(2-) ([closo-B(10)H(9)R](2-)) moiety for (211)At labeling of biomolecules provides conjugates that are stable to in vivo deastatination. In this investigation, the closo-decaborate(2-) moiety was compared with the structurally similar closo-dodecaborate(2-) ([closo-B(12)H(11)R](2-)) to determine if one has more favorable properties than the other for use in pendant groups as (211)At labeling molecules.

View Article and Find Full Text PDF