Publications by authors named "Matthew A Oberhardt"

Drug side effects levy a massive cost on society through drug failures, morbidity, and mortality cases every year, and their early detection is critically important. Here, we describe the array of model-based phenotype predictors (AMPP), an approach that leverages medical informatics resources and a human genome-scale metabolic model (GSMM) to predict drug side effects. AMPP is substantially predictive (AUC > 0.

View Article and Find Full Text PDF

Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes.

View Article and Find Full Text PDF

Culturing microorganisms is a critical step in understanding and utilizing microbial life. Here we map the landscape of existing culture media by extracting natural-language media recipes into a Known Media Database (KOMODO), which includes >18,000 strain-media combinations, >3300 media variants and compound concentrations (the entire collection of the Leibniz Institute DSMZ repository). Using KOMODO, we show that although media are usually tuned for individual strains using biologically common salts, trace metals and vitamins/cofactors are the most differentiating components between defined media of strains within a genus.

View Article and Find Full Text PDF

Understanding microbial nutritional requirements is a key challenge in microbiology. Here we leverage the recent availability of thousands of automatically generated genome-scale metabolic models to develop a predictor of microbial minimal medium requirements, which we apply to thousands of species to study the relationship between their nutritional requirements and their ecological and genomic traits. We first show that nutritional requirements are more similar among species that co-habit many ecological niches.

View Article and Find Full Text PDF

Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.

View Article and Find Full Text PDF

Costs for drug development have soared, exposing a clear need for new R&D strategies. Systems biology has meanwhile emerged as an attractive vehicle for integrating omics data and other post-genomic technologies into the drug pipeline. One of the emerging areas of computational systems biology is constraint-based modeling (CBM), which uses genome-scale metabolic models (GSMMs) as platforms for integrating and interpreting diverse omics datasets.

View Article and Find Full Text PDF

In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared.

View Article and Find Full Text PDF

Using eight newly generated models relevant to addiction, Alzheimer's disease, cancer, diabetes, HIV, heart disease, malaria, and tuberculosis, we show that systems analysis of small (4-25 species), bounded protein signaling modules rapidly generates new quantitative knowledge from published experimental research. For example, our models show that tumor sclerosis complex (TSC) inhibitors may be more effective than the rapamycin (mTOR) inhibitors currently used to treat cancer, that HIV infection could be more effectively blocked by increasing production of the human innate immune response protein APOBEC3G, rather than targeting HIV's viral infectivity factor (Vif), and how peroxisome proliferator-activated receptor alpha (PPARα) agonists used to treat dyslipidemia would most effectively stimulate PPARα signaling if drug design were to increase agonist nucleoplasmic concentration, as opposed to increasing agonist binding affinity for PPARα. Comparative analysis of system-level properties for all eight modules showed that a significantly higher proportion of concentration parameters fall in the top 15th percentile sensitivity ranking than binding affinity parameters.

View Article and Find Full Text PDF

System-level modeling is beginning to be used to decipher high throughput data in the context of disease. In this study, we present an integration of expression microarray data with a genome-scale metabolic reconstruction of Pseudomonas aeruginosa in the context of a chronic cystic fibrosis (CF) lung infection. A genome-scale reconstruction of P.

View Article and Find Full Text PDF

The availability and utility of genome-scale metabolic reconstructions have exploded since the first genome-scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high-throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis-driven discovery, (4) interrogation of multi-species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome-scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology.

View Article and Find Full Text PDF

Flux balance analysis (FBA) is a computational method to analyze reconstructions of biochemical networks. FBA requires the formulation of a biochemical network in a precise mathematical framework called a stoichiometric matrix. An objective function is defined (e.

View Article and Find Full Text PDF

A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P.

View Article and Find Full Text PDF

Background: Optimization theory has been applied to complex biological systems to interrogate network properties and develop and refine metabolic engineering strategies. For example, methods are emerging to engineer cells to optimally produce byproducts of commercial value, such as bioethanol, as well as molecular compounds for disease therapy. Flux balance analysis (FBA) is an optimization framework that aids in this interrogation by generating predictions of optimal flux distributions in cellular networks.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a major life-threatening opportunistic pathogen that commonly infects immunocompromised patients. This bacterium owes its success as a pathogen largely to its metabolic versatility and flexibility. A thorough understanding of P.

View Article and Find Full Text PDF

Background: Tissue morphogenesis is a complex process whereby tissue structures self-assemble by the aggregate behaviors of independently acting cells responding to both intracellular and extracellular cues in their environment. During embryonic development, morphogenesis is particularly important for organizing cells into tissues, and although key regulatory events of this process are well studied in isolation, a number of important systems-level questions remain unanswered. This is due, in part, to a lack of integrative tools that enable the coupling of biological phenomena across spatial and temporal scales.

View Article and Find Full Text PDF