The high incidence of ischemic stroke worldwide and poor efficacy of neuroprotective drugs has increased the need for novel therapies in stroke recovery. Transcription of the neurosecretory protein VGF (non-acronym) is enhanced following ischemic stroke and proposed to be important for stroke recovery. To determine the requirement for VGF in recovery, we created Vgf:Nestin-Cre conditional knockout (Vgf cKO) mice and induced a photothrombotic focal ischemic stroke.
View Article and Find Full Text PDFDNA sequence and epigenetic information embedded in chromatin must be faithfully duplicated and transmitted to daughter cells during cell division. However, how chromatin assembly and DNA replication are integrated remains unclear. We examined the contribution of the Tousled-like kinases 1 and 2 (TLK1/TLK2) to chromatin assembly and maintenance of replication fork integrity.
View Article and Find Full Text PDFRibosomal RNA synthesis occurs in the nucleolus and is a tightly regulated process that is targeted in some developmental diseases and hyperactivated in multiple cancers. Subcellular localization and immunoprecipitation coupled mass spectrometry demonstrated that a proportion of plant homeodomain (PHD) finger protein 6 (PHF6) protein is localized within the nucleolus and interacts with proteins involved in ribosomal processing. PHF6 sequence variants cause Börjeson-Forssman-Lehmann syndrome (BFLS, MIM#301900) and are also associated with a female-specific phenotype overlapping with Coffin-Siris syndrome (MIM#135900), T-cell acute lymphoblastic leukemia (MIM#613065), and acute myeloid leukemia (MIM#601626); however, very little is known about its cellular function, including its nucleolar role.
View Article and Find Full Text PDFThe importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson-Forssman-Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML).
View Article and Find Full Text PDFChromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum.
View Article and Find Full Text PDFJ Proteome Res
August 2012
Mutations in PHF6 are the cause of Börjeson-Forssman-Lehman syndrome (BFLS), an X-linked intellectual disability (XLID) disorder, and both T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). The PHF6 gene encodes a protein with two plant homeodomain (PHD)-like zinc finger domains. As many PHD-like domains function to target chromatin remodelers to post-translationally modified histones, this suggests a role for PHF6 in chromatin regulation.
View Article and Find Full Text PDFPhysiology (Bethesda)
April 2009
The heterogeneous nature of congenital hydrocephalus has hampered our understanding of the molecular basis of this common clinical problem. However, disease gene identification and characterization of multiple transgenic mouse models has highlighted the importance of the subcommissural organ (SCO) and the ventricular ependymal (vel) cells. Here, we review how altered development and function of the SCO and vel cells contributes to hydrocephalus.
View Article and Find Full Text PDFBackground: Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (MeCP2), modify histones (RSK2 and JARID1C), and remodel nucleosomes through ATP hydrolysis (ATRX). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes.
View Article and Find Full Text PDF