Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that -diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C).
View Article and Find Full Text PDFHerein we combine the well-known processing advantages conferred by polymerization-induced self-assembly (PISA) with crystallization-driven self-assembly (CDSA) to achieve the efficient synthesis of hydrolytically degradable, highly anisotropic block copolymer nano-objects directly in aqueous solution at 30% w/w solids. This new strategy involves a so-called reverse sequence PISA protocol that employs poly(l-lactide) (PLLA) as the crystallizable core-forming block and poly(-dimethylacrylamide) (PDMAC) as the water-soluble non-ionic coronal block. Such syntheses result in PDMAC-rich anisotropic nanoparticles.
View Article and Find Full Text PDFSterically-stabilized diblock copolymer nanoparticles comprising poly(propylene oxide) (PPO) cores are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous solution. '-Dimethylacrylamide (DMAC) acts as a cosolvent for the weakly hydrophobic trithiocarbonate-capped PPO precursor. Reversible addition-fragmentation chain transfer (RAFT) polymerization of DMAC is initially conducted at 80% w/w solids with deoxygenated water.
View Article and Find Full Text PDFHydrolytically degradable block copolymer nanoparticles are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous media. This efficient protocol involves the reversible addition-fragmentation chain transfer (RAFT) polymerization of N,N'-dimethylacrylamide (DMAC) using a monofunctional or bifunctional trithiocarbonate-capped poly(ϵ-caprolactone) (PCL) precursor. DMAC monomer is employed as a co-solvent to solubilize the hydrophobic PCL chains.
View Article and Find Full Text PDF