Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown.
View Article and Find Full Text PDFChanges in an animal's behavior and internal state are accompanied by widespread changes in activity across its brain. However, how neurons across the brain encode behavior and how this is impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving C.
View Article and Find Full Text PDFSerotonin influences many aspects of animal behavior. But how serotonin acts on its diverse receptors across the brain to modulate global activity and behavior is unknown. Here, we examine how serotonin release in C.
View Article and Find Full Text PDFAnimals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neuron classes in the circuits that generate behavior have a remarkable capacity for flexibility, as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of highly coordinated behaviors remains unknown.
View Article and Find Full Text PDFSerotonin controls many aspects of animal behavior and cognition. But how serotonin acts on its diverse receptor types in neurons across the brain to modulate global activity and behavior is unknown. Here, we examine how serotonin release from a feeding-responsive neuron in alters brain-wide activity to induce foraging behaviors, like slow locomotion and increased feeding.
View Article and Find Full Text PDFAnimals must weigh competing needs and states to generate adaptive behavioral responses to the environment. Sensorimotor circuits are thus tasked with integrating diverse external and internal cues relevant to these needs to generate context-appropriate behaviors. However, the mechanisms that underlie this integration are largely unknown.
View Article and Find Full Text PDF