Publications by authors named "Matthew A Fountain"

RNA repeat expansions fold into stable structures and cause microsatellite diseases such as Huntington's disease (HD), myotonic dystrophy type 1 (DM1), and spinocerebellar ataxias (SCAs). The trinucleotide expansion of r(CAG), or r(CAG), causes both HD and SCA3, and the RNA's toxicity has been traced to its translation into polyglutamine (polyQ; HD) as well as aberrant pre-mRNA alternative splicing (SCA3 and HD). Previously, a small molecule, , was discovered that binds to r(CAG) and rescues aberrant pre-mRNA splicing in patient-derived fibroblasts by freeing proteins bound to the repeats.

View Article and Find Full Text PDF

Trinucleotide repeat expansions fold into long, stable hairpins and cause a variety of incurable RNA gain-of-function diseases such as Huntington's disease, the myotonic dystrophies, and spinocerebellar ataxias. One approach for treating these diseases is to bind small molecules to these structured RNAs. Both Huntington's disease-like 2 (HDL2) and myotonic dystrophy type 1 (DM1) are caused by a r(CUG) repeat expansion, or r(CUG).

View Article and Find Full Text PDF

Trinucleotide repeat expansions fold into long, stable hairpins and cause a variety of incurable RNA gain-of-function diseases such as Huntington's disease, the myotonic dystrophies, and spinocerebellar ataxias. One approach for treating these diseases is to bind small molecules to the structured RNAs. Both Huntington's disease-like 2 (HDL2) and myotonic dystrophy type 1 (DM1) are caused by a r(CUG) repeat expansion, or r(CUG).

View Article and Find Full Text PDF

Approximately 95% of human genes are alternatively spliced, and aberrant splicing events can cause disease. One pre-mRNA that is alternatively spliced and linked to neurodegenerative diseases is tau (microtubule-associated protein tau), which can cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and can contribute to Alzheimer's disease. Here, we describe the design of structure-specific lead small molecules that directly target tau pre-mRNA from sequence.

View Article and Find Full Text PDF

RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player.

View Article and Find Full Text PDF

The Zn(2+) complex of 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine, Zn(DSC), binds selectively to the biologically relevant human telomeric (H-Telo) G-quadruplex. An increase in the Zn(DSC) dansyl group fluorescence with a simultaneous shift in emission is consistent with the complex binding to H-Telo. The H-Telo G-quadruplex has two binding sites for Zn(DSC) with binding constants in the low micromolar range (2.

View Article and Find Full Text PDF

The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines.

View Article and Find Full Text PDF

A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge.

View Article and Find Full Text PDF

Two trinucleotide conjugates of the macrocyclic ligand 1,4,7-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane are prepared. One contains only DNA (1) and the second is a chimeric RNA/DNA conjugate (2). The synthetic methodology used to prepare the trinucleotide macrocyclic ligand conjugates is based on the introduction of a convertible nucleoside which has an electrophilic function to facilitate the attachment of any nucleophilic ligand to the 5-position of the 3-nucleoside unit.

View Article and Find Full Text PDF

The J4/5 loop of the group I intron in the mouse-derived fungal pathogen Pneumocystis carinii is the docking site for the first step of the RNA-catalyzed self-splicing reaction and thus is a model of a potential drug target. This purine-rich asymmetric internal loop, 5'GGAAG/3'UAGU, is also thermodynamically more stable than other internal loops with two GU closing pairs and three nucleotides opposite two nucleotides. The results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments suggest that the GU closing pairs form and that sheared GA pairs form in the internal loop.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuc8ece2uq3fqa88nejm6t3nsoif10o5f): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once