The latter steps in this biosynthetic pathway for the antimalarial phosphonic acid FR-900098 include the installation of a hydroxamate onto 3-aminopropylphosphonate, which is catalyzed by the consecutive actions of an acetyltransferase and an amine hydroxylase. Here, we present the 1.6 Å resolution co-crystal structure and accompanying biochemical characterization of FrbG, which catalyzes the hydroxylation of aminopropylphosphonate.
View Article and Find Full Text PDFWe report here the enzymatic biosynthesis of FR-900098 analogues and establish an in vivo platform for the biosynthesis of an N-propionyl derivative FR-900098P. FR-900098P is found to be a significantly more potent inhibitor of Plasmodium falciparum 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PfDxr) than the parent compound, and thus a more promising antimalarial drug candidate.
View Article and Find Full Text PDFThe enzyme FrbF from Streptomyces rubellomurinus has attracted significant attention due to its role in the biosynthesis of the antimalarial phosphonate FR-900098. The enzyme catalyzes acetyl transfer onto the hydroxamate of the FR-900098 precursors cytidine 5'-monophosphate-3-aminopropylphosphonate and cytidine 5'-monophosphate-N-hydroxy-3-aminopropylphosphonate. Despite the established function as a bona fide N-acetyltransferase, FrbF shows no sequence similarity to any member of the GCN5-like N-acetyltransferase (GNAT) superfamily.
View Article and Find Full Text PDFChem Commun (Camb)
September 2011
The Fe(II) and α-ketoglutarate-dependent hydroxylase FrbJ was previously demonstrated to utilize FR-900098 synthesizing a second phosphonate FR-33289. Here we assessed its ability to hydroxylate other possible substrates, generating a library of potential antimalarial compounds. Through a series of bioassays and in vitro experiments, we identified two new antimalarials.
View Article and Find Full Text PDFFR-900098 is a potent chemotherapeutic agent for the treatment of malaria. Here we report the heterologous production of this compound in Escherichia coli by reconstructing the entire biosynthetic pathway using a three-plasmid system. Based on this system, whole-cell feeding assays in combination with in vitro enzymatic activity assays reveal an unusual functional role of nucleotide conjugation and lead to the complete elucidation of the previously unassigned late biosynthetic steps.
View Article and Find Full Text PDF