Objective: Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease. Studies of human aneurysm tissue demonstrate dense inflammatory cell infiltrates with CD4 T cells predominating. Regulatory T cells (Tregs) play an important role in inhibiting pro-inflammatory T cell proliferation, therefore, limiting collateral tissue destruction.
View Article and Find Full Text PDFObjective: Abdominal aortic aneurysms are inflammatory in nature and are associated with some risk factors that also lead to atherosclerotic occlusive disease, most notably smoking. The purpose of our study was to identify differential cytokine expression in patients with abdominal aortic aneurysm and those with atherosclerotic occlusive disease. Based on this analysis, we further explored and compared the mechanism of action of IL (interleukin)-1β versus TNF-α (tumor necrosis factor-α) in abdominal aortic aneurysm formation.
View Article and Find Full Text PDFAbdominal aortic aneurysm is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix degradation. Damage to elastin in the extracellular matrix results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known.
View Article and Find Full Text PDFObjective: Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
August 2015
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types.
View Article and Find Full Text PDFPlants and certain species of cyanobacteria are the only organisms capable of synthesizing phylloquinone (vitamin K₁ for vertebrates), which they use as an electron carrier during photosynthesis. Recent studies, however, have identified a plastidial pool of non-photoactive phylloquinone that could be involved in additional cellular functions. Here, we characterized an Arabidopsis bimodular enzyme--the At4g35760 gene product--comprising an integral domain homologous to the catalytic subunit of mammalian vitamin K₁ epoxide reductase (VKORC1, EC 1.
View Article and Find Full Text PDF