Biophys Rev
October 2024
An introduction to IUPAB Councillor (2024-2027) A/Prof Matthew AB Baker (UNSW Sydney).
View Article and Find Full Text PDFOn the 28th of June, 2024, we held a session focusing on bacterial motility at the International Union of Pure and Applied Biophysics Congress, held in Kyoto (IUPAB2024). This session was jointly chaired by Professor Seiji Kojima of Nagoya University and Associate Professor Matthew Baker of UNSW Sydney, highlighting significant advancements and discoveries in bacterial cellular mechanisms and motility, with six speakers each from different countries.
View Article and Find Full Text PDFUnlabelled: Powered by ion transport across the cell membrane, conserved ion-powered rotary motors (IRMs) drive bacterial motility by generating torque on the rotor of the bacterial flagellar motor. Homologous heteroheptameric IRMs have been structurally characterized in ion channels such as Tol/Ton/Exb/Gld, and most recently in phage defense systems such as Zor. Functional stator complexes synthesized from chimeras of PomB/MotB (PotB) have been used to study flagellar rotation at low ion-motive force achieved via reduced external sodium concentration.
View Article and Find Full Text PDFDPANN archaea are a diverse group of microorganisms characterised by small cells and reduced genomes. To date, all cultivated DPANN archaea are ectosymbionts that require direct cell contact with an archaeal host species for growth and survival. However, these interactions and their impact on the host species are poorly understood.
View Article and Find Full Text PDFLight is a key environmental component influencing many biological processes, particularly in prokaryotes such as archaea and bacteria. Light control techniques have revolutionized precise manipulation at molecular and cellular levels in recent years. Bacteria, with adaptability and genetic tractability, are promising candidates for light control studies.
View Article and Find Full Text PDFMany bacteria swim driven by an extracellular filament rotated by the bacterial flagellar motor. This motor is powered by the stator complex, MotA MotB , an heptameric complex which forms an ion channel which couples energy from the ion motive force to torque generation. Recent structural work revealed that stator complex consists of a ring of five MotA subunits which rotate around a central dimer of MotB subunits.
View Article and Find Full Text PDFMolecular motors are found in many living organisms. One such molecular machine, the ion-powered rotary motor (IRM), requires the movement of ions across a membrane against a concentration gradient to drive rotational movement. The bacterial flagellar motor (BFM) is an example of an IRM which relies on ion movement through the stator proteins to generate the rotation of the flagella.
View Article and Find Full Text PDFThe bacterial flagellar motor (BFM) is a rotary nanomachine powered by the translocation of ions across the inner membrane through the stator complex. The stator complex consists of two membrane proteins: MotA and MotB (in H-powered motors), or PomA and PomB (in Na-powered motors). In this study, we used ancestral sequence reconstruction (ASR) to probe which residues of MotA correlate with function and may have been conserved to preserve motor function.
View Article and Find Full Text PDFMicrofluidics devices are gaining significant interest in biomedical applications. However, in a micron-scale device, reaction speed is often limited by the slow rate of diffusion of the reagents. Several active and passive micro-mixers have been fabricated to enhance mixing in microfluidic devices.
View Article and Find Full Text PDFLentigo maligna (LM) is an early form of pre-invasive melanoma that predominantly affects sun-exposed areas such as the face. LM is highly treatable when identified early but has an ill-defined clinical border and a high rate of recurrence. Atypical intraepidermal melanocytic proliferation (AIMP), also known as atypical melanocytic hyperplasia (AMH), is a histological description that indicates melanocytic proliferation with uncertain malignant potential.
View Article and Find Full Text PDFDetermining which cellular processes facilitate adaptation requires a tractable experimental model where an environmental cue can generate variants that rescue function. The bacterial flagellar motor (BFM) is an excellent candidate-an ancient and highly conserved molecular complex for bacterial propulsion toward favorable environments. Motor rotation is often powered by H or Na ion transit through the torque-generating stator subunit of the motor complex, and ion selectivity has adapted over evolutionary time scales.
View Article and Find Full Text PDFDNA nanotechnology provides methods for building custom membrane-interacting nanostructures with diverse functions, such as shaping membranes, tethering defined numbers of membrane proteins, and transmembrane nanopores. The modification of DNA nanostructures with hydrophobic groups, such as cholesterol, is required to facilitate membrane interactions. However, cholesterol-induced aggregation of DNA origami nanostructures remains a challenge.
View Article and Find Full Text PDFMembranes (Basel)
November 2021
Ion channels are membrane proteins that play important roles in a wide range of fundamental cellular processes. Studying membrane proteins at a molecular level becomes challenging in complex cellular environments. Instead, many studies focus on the isolation and reconstitution of the membrane proteins into model lipid membranes.
View Article and Find Full Text PDFLiposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement.
View Article and Find Full Text PDFMany motile bacteria are propelled by the rotation of flagellar filaments. This rotation is driven by a membrane protein known as the stator-complex, which drives the rotor of the bacterial flagellar motor. Torque generation is powered in most cases by proton transit through membrane protein complexes known as stators, with the next most common ionic power source being sodium.
View Article and Find Full Text PDFWe report evidence further supporting homology between proteins in the F F -ATP synthetase and the bacterial flagellar motor (BFM). BFM proteins FliH, FliI, and FliJ have been hypothesized to be homologous to F -b + F -δ, F -α/β, and F -γ, with similar structure and interactions. We conduct a further test by constructing a gene order dataset, examining the order of fliH, fliI, and fliJ genes across the phylogenetic breadth of flagellar and nonflagellar type 3 secretion systems, and comparing this to published surveys of gene order in the F F -ATP synthetase, its N-ATPase relatives, and the bacterial/archaeal V- and A-type ATPases.
View Article and Find Full Text PDFThe bacterial flagellar motor (BFM) is a nanomachine that rotates the flagellum to propel many known bacteria. The BFM is powered by ion transit across the cell membrane through the stator complex, a membrane protein. Different bacteria use various ions to run their BFM, but the majority of BFMs are powered by either proton (H) or sodium (Na) ions.
View Article and Find Full Text PDFThe microbial environment is typically within a fluid and the key processes happen at the microscopic scale where viscosity dominates over inertial forces. Microfluidic tools are thus well suited to study microbial motility because they offer precise control of spatial structures and are ideal for the generation of laminar fluid flows with low Reynolds numbers at microbial lengthscales. These tools have been used in combination with microscopy platforms to visualise and study various microbial taxes.
View Article and Find Full Text PDFRecently, DNA-PAINT single-molecule localization microscopy (SMLM) has shown great promise for quantitative imaging; however, labelling strategies thus far have relied on multivalent and affinity-based approaches. Here, the covalent labelling of expressed protein tags (SNAP tag and Halo tag) with single DNA-docking strands and application of SMLM via DNA-PAINT is demonstrated. tagPAINT is then used for T-cell receptor signalling proteins at the immune synapse as a proof of principle.
View Article and Find Full Text PDFLipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores.
View Article and Find Full Text PDFThe bacterial flagellar motor is driven by an ion flux that is converted to torque by motor-attendant complexes known as stators. The dynamics of stator assembly around the motor in response to external stimuli have been the subject of much recent research, but less is known about the evolutionary origins of stator complexes and how they select for specific ions. Here, we review the latest structural and biochemical data for the stator complexes and compare these with other ion transporters and microbial motors to examine possible evolutionary origins of the stator complex.
View Article and Find Full Text PDFQuantitative PAINT (qPAINT) is a useful method for counting well-separated molecules within nanoscale assemblies. But whether cross-reactivity in densely-packed arrangements perturbs measurements is unknown. Here we establish that qPAINT measurements are robust even when target molecules are separated by as little as 3 nm, sufficiently close that single-stranded DNA binding sites can interact.
View Article and Find Full Text PDF